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Abstract—We delineate a mathematical model for the
dynamics of the spread of ectoparasites and the diseases
transmitted by them. We present how the dynamics of
the system depends on the three reproduction numbers
belonging to three of the four possible equilibria and
give a complete characterization of the structure of the
global attractor in each possible case depending on the
reproduction numbers.
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I. I NTRODUCTION

Ectoparasites (e.g. lice, fleas, mites) cause a serious
problem in several parts in the world [2], [4]. Ectopar-
asite infestations are often connected to the lack of
hygiene and poor economical conditions, however, their
presence is increasing in developed countries as well.

The three louse species which transmit diseases are the
head louse, the body louse and the pubic louse. These
species are responsible for the spread of trench fever,
epidemic typhus and relapsing fever. The flea species
which most commonly affect humans are the cat, the
rat and the human flea. Fleas transmit plague, murine
typhus, fleaborne spotted rickettsiosis. The transmission
of these diseases is different from that of other vector-
borne diseases, as it is carried out through the human
contact network, which means that the spread of the
vectors themselves is similar to that of a disease.

In this paper we delineate a model for the dynamics
of ectoparasite-borne diseases and we describe the struc-
ture of the global attractors in the different situations

depending on the reproduction numbers. We assume the
presence of one disease and one ectoparasite species
which is a vector transmitting this particular disease.

The human population is divided into three compart-
ments: susceptibles (i.e. those who can be infested by
both infectious and non-infectous vectors, denoted by
S(t)), those who are infected by non-infectious para-
sites (denoted byT (t)) and those who are infested by
infectious vectors (denoted byQ(t)). We assume that
someone infested by non-infectious vectors can transmit
the parasites to susceptibles, while an individual infested
by infectious vectors transmits both the parasites and
the disease to susceptibles. An individual infested by
infectious vectors transmits the infection to individuals
infested by non-infectious vectors, i.e. a member of com-
partmentT can move to compartmentQ upon adequate
contact with someone from compartmentQ. We assume
that a person is infected by the disease if and only
he is infested by infectious parasites. We suppose that
individuals infested by infected parasites transmit the
disease at the same rate to susceptibles and to those who
are infested by non-infected parasites. We denote this
transmission rate byβQ, andβT denotes the transmission
rate for non-infectious vectors (to susceptibles). The
rate of disinfestation is denoted byµ for the infected
compartment and byθ for the non-infected compartment.
We denote byb the natural birth and death rates, and we
assume the disease is not fatal, thus the population size
is constant. In the model equations we use mass action
incidence.

We have the following system of differential equations
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(with all the parameters assumed to be positive):

S′(t) = −βT S(t)T (t)− βQS(t)Q(t)

+ θT (t) + µQ(t) + b− bS(t),

T ′(t) = βT S(t)T (t)

− βQQ(t)T (t)− θT (t)− bT (t),

Q′(t) = βQS(t)Q(t)

+ βQQ(t)T (t)− µQ(t)− bQ(t).

(1)

It can easily be seen that any solution with non-
negative initial values remains non-negative for all for-
ward time. We can suppose that

N(t) = S(t) + T (t) + Q(t) = 1

holds for the total population. The phase space of our
system isX := {(S, T, Q) ∈ R3

+ : S + T + Q = 1}.

II. EQUILIBRIA , REPRODUCTIONNUMBERS

By solving the algebraic equations

0 = −βT S∗T ∗ − βQS∗Q∗ + θT ∗ + µQ∗ + b− bS∗,

0 = βT S∗T ∗ − βQQ∗T ∗ − θT ∗ − bT ∗,

0 = βQS∗Q∗ + βQQ∗T ∗ − µQ∗ − bQ∗,

we can determine the four equilibria of system(1):

ES = (1, 0, 0),

ET =
(

b + θ

βT
, 1− b + θ

βT
, 0

)
,

EQ =
(

b + µ

βQ
, 0, 1− b + µ

βQ

)
,

EQT =
(

θ − µ + βQ

βT
,
b + µ

βQ
− θ − µ + βQ

βT
, 1− b + µ

βQ

)
.

Reproduction numbers have a clear biological interpreta-
tion. We can obtain them by multiplying the number of new
infections and the average length of the infectious period of an
infectious agent newly introduced into a population currently
being in one of the equilibria.

By introducing an infested, non-infectious individual into a
population in the equilibriumES , we obtain the reproduction
number

R1 =
βT

b + θ
,

by introducing an infested and infectious individual into the
same equilibrium we obtain the reproduction number

R2 =
βQ

b + µ
.

Calculating the expected number of secondary infections
caused by the introduction of an infectious infested individual
into a population in the equilibriumET gives the same
reproduction numberR2.

If we introduce a non-infectious infested individual into a
population in the equilibriumEQ, we obtain the reproduction
number

R3 =
βT (b + µ)

βQ(βQ − µ + θ)
.

The following lemma is taken from [3].
Lemma 2.1: The equilibriumES always exists. The equi-

librium ET exists if and onlyR1 > 1. The equilibriumEQ

exists if and only ifR2 > 1. The equilibriumEQT exists if
and only if R2 > 1 andR3 > 1.

III. STRUCTURE OF THEGLOBAL ATTRACTOR

Here we recall the main result of [3].
Theorem 3.1: Let XQ := {(S, T, 0) ∈ R3

+ : S + T = 1}
and XT := {(S, 0, Q) ∈ R3

+ : S + Q = 1} denote the
extinction sets forQ andT , respectively. The four equilibria
have the following global stability properties depending on the
reproduction numbers:

(i) EquilibriumES is globally asymptotically stable ifR1 ≤
1 andR2 ≤ 1.

(ii) Equilibrium ET is globally asymptotically stable onX \
XT if R1 > 1 and R2 ≤ 1. On XT , ES is globally
asymptotically stable.

(iii) If R2 > 1, R3 ≤ 1 and R1 ≤ 1, then EQ is globally
asymptotically stable onX \ XQ and ES is globally
asymptotically stable onXQ.

(iv) If R2 > 1, R3 ≤ 1 and R1 > 1, then EQ is globally
asymptotically stable onX \ XQ and ET is globally
asymptotically stable onXQ.

(v) If R2 > 1, R3 > 1, thenEQT is globally asymptotically
stable onX \ (XQ∪XT ), ET is globally asymptotically
stable onXQ and EQ is globally asymptotically stable
on XT .

An equilibrium E is said to be globally asymptotically stable
on a setY if it is stable and for ally ∈ Y the solution starting
from y converges toE as t → ∞. Following the notation of
[1, 1.1.7], byMt we denote the set consisting of the states at
time t of the solutions started from all of the pointsx ∈ M .

Definition 3.2: Let A ∈ X be a compact invariant set. If
A attracts each bounded subset ofX, i.e. for any bounded
subsetM ⊂ X and any neighbourhoodU of A there exists a
T < ∞ such thatMt ⊂ U for all t > T , thenA is called the
global attractor.

Definition 3.3: The ω-limit set of a pointx ∈ X, denoted
by ω(x) consists of those elementsy of X for which there
exists a real sequence{tn} such thattn ↗∞ andxtn → y as
n →∞. The α-limit set is defined similarly withtn ↘ −∞.

In the following theorem we describe the structure of the
global attractor for system (1) in the five cases listed in
Theorem 3.1.

Theorem 3.4:The global attractorA for system (1) has the
following structure:

(i) A = {ES}.
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Fig. 1. Representation of the flow and the attractors on theTQ-plane.

(ii) A = {ES , ET }∪γ1, whereγ1 is a connecting orbit from
ES to ET , which is actually the segment betweenES

andET in the extinction spaceXQ.
(iii) A = {ES , EQ}∪γ2, whereγ2 is a connecting orbit from

ES to EQ, which is actually the segment betweenES

andEQ in the extinction spaceXT .
(iv) A = {ES , ET , EQ} ∪ γ1 ∪ γ2 ∪ γ3 ∪ A1, whereγ3 is a

connecting orbit fromET to EQ, andA1 is the domain
surrounded byES , ET , EQ, γ1, γ2 and γ3 in the TQ-
plane consisting of connecting orbits fromES to EQ.

(v) A = {ES , ET , EQ, EQT } ∪ γ1 ∪ γ2 ∪ γ4 ∪ γ5 ∪ A2,
where γ4 is a connecting orbit fromET to EQT , γ5

is a connecting orbit fromEQ to EQT , andA2 is the
domain surrounded byES , ET , EQ, EQT , γ1, γ2, γ4 and
γ5 in theTQ-plane consisting of connecting orbits from
ES to EQT .
Proof:

(i) As proved in Theorem 3.1,ES is globally asymptotically
stable in case (i), which means that the global attractor
is the singletonES in this case.
For the proof of the remaining cases we reduce the sys-
tem to two dimensions by substitutingS with 1−T −Q.

We get the system

T ′(t) = βT (1− T (t)−Q(t))T (t)

− βQQ(t)T (t)− θT (t)− bT (t),

Q′(t) = βQ(1− T (t)−Q(t))Q(t)

+ βQQ(t)T (t)− µQ(t)− bQ(t)

(2)

and the four equilibria

ES = (0, 0),

ET =
(

1− b + θ

βT
, 0

)
,

EQ =
(

0, 1− b + µ

βQ

)
,

EQT =
(

b + µ

βQ
− θ − µ + βQ

βT
, 1− b + µ

βQ

)
.

By standard linearization, we calculate the eigenvalues
and eigenvectors of the Jacobian of the linearized system
in the four equilibria. The details of the calculations are
straightforward thus omitted, here we only discuss the
results and implications. The eigenvalues of the Jacobian
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of the linearized equation around the equilibriumES are
λ1 = −b−θ+βT = (b+θ)(R1−1) with corresponding
eigenvector(1, 0) andλ2 = −b−µ+βQ = (b+µ)(R2−
1) with corresponding eigenvector(0, 1). Linearizing at
the equilibriumET , one finds the eigenvaluesλ1 = b +
θ − βT = (b + θ)(1 − R1) with the eigenvector(1, 0)
and λ2 = −b − µ + βQ = (b + µ)(R2 − 1) with the
eigenvector(

(βQ + βT )(b + θ − βT )
βT (βQ + βT − 2b− θ − µ)

, 1
)

.

Linearization around the steady stateEQ gives the fol-
lowing eigenvalues of the Jacobian:λ1 = b + µ− βQ =
(b + µ)(1 − R2) with the eigenvector(0, 1) and λ2 =
−θ+µ−βQ+(b+µ)βT /βQ = (R3−1)βT /(R2R3) with
the eigenvector(1, 0). Finally, if we linearize the system
around the equilibriumEQT , we obtain the eigenvalues
λ1 = b + µ− βQ = (b + µ)(1−R2) with corresponding
eigenvector(

(βQ + βT )(βQ(βQ + θ)− bβT − µ(βQ + βT ))
βT (b(βQ + βT )− βQ(2βQ + θ) + (2βQ + βT )µ)

, 1
)

and λ2 = θ − µ + βQ − (b + µ)βT /βQ = (1 −
R3)βT /(R2R3) with corresponding eigenvector(1, 0).

(ii) If R1 > 1 andR2 < 1 thenES has the stable eigenvector
(0, 1) and the unstable eigenvector(1, 0). This means
that ES has a one-dimensional stable manifold which
coincides with the invariant extinction spaceXT and
a one-dimensional unstable manifold which coincides
with the segment(ES , ET ) of the extinction spaceXQ,
while both of the eigenvectors atET are stable.γ1 is the
connecting orbit fromES to ET lying in XQ. If R2 = 1
then the second eigenvalue atES is equal to zero. In this
case, the equation forQ′(t) takes the form

Q′(t) = −βQQ2(t) < 0

on XT , which means that all solutions started fromXT

tend to ES . Thus ES has the same one-dimensional
stable and unstable sets as in the caseR2 6= 1. From
Theorem 3.1 we know that all solutions started from
X \ XT tend to ET , thus ET has a two-dimensional
stable set.

(iii) If R1 < 1, R2 > 1 andR3 < 1 thenES has the stable
eigenvector(1, 0), and the unstable eigenvector(0, 1),
while (0, 1) and (1, 0) are both stable eigenvectors for
EQ. If R1 = 1 then the equation forT ′(t) takes the form

T ′(t) = −βT T 2(t) < 0,

on the invariant extinction spaceXQ. This means that all
solutions on the center manifold belonging to the zero
eigenvalue (which coincides withXQ) tend to ES . If
R3 = 1 then the Jacobian of the linearized system at
EQ has a zero eigenvalue with eigenvector(1, 0). The
line

Q = 1− b + µ

βQ

is invariant: if we substitute1 − (b + µ)/βQ into the
equation forQ′(t) we getQ′(t) = 0. This means that
for R3 = 1 the center manifold belonging to the zero
eigenvalue coincides with this line. ForR3 = 1, the
equation forT ′(t) has the form

T ′(t) = −βT T 2(t) < 0

on this line, which means that all solutions started from
this line tend to the equilibriumEQ. γ2 is the connecting
orbit from ES to EQ lying in XT . This shows the
statement of (iii).

(iv) In this case, the first eigenvector belonging toES loses
its stability, while the same vector becomes a stable
eigenvector forET . Thus,ES has two unstable eigen-
vectors andET has the stable eigenvector(1, 0) and an
unstable eigenvector. From Theorem 3.1 we know that
any solution started from the one-dimensional unstable
manifold of ET tends toEQ, from which the existence
of a heteroclinic orbitγ3 from ET to EQ follows. The
situation forEQ is the same as in case (iii). We have
to show thatA1 consists of heteroclinic orbits from
ES to EQ. Let us take an arbitrary pointp ∈ A1.
From Theorem 3.1 we know thatω(p) = {EQ}. The
negative limit setα(p) exists and is non-empty as the
backward orbit is bounded byγ1 ∪ γ2 ∪ γ3. From the
Poincaré–Bendixson Theorem we know thatα(p) can
only be an equilibrium point (as there are no periodic
orbits). We can excludeEQ as it has a two-dimensional
stable manifold. The unstable manifold ofET coincides
with XQ, which is invariant andA1 ∩ XQ = ∅, thus
α(p) = {ES}.

(v) In this case, again,ES has two unstable eigenvectors
and thus a two-dimensional unstable manifold. Similarly
to the previous case,ET has a stable and an unsta-
ble eigenvector, thus having a one-dimensional stable
manifold and a one-dimensional unstable manifold. The
eigenvector(1, 0) for EQ is unstable, which means
that EQ has a one-dimensional stable manifold and a
one-dimensional unstable manifold.EQT has two stable
eigenvectors and thus a two-dimensional stable manifold.
From Theorem 3.1 we know that all solutions started
from X \ (XT ∪XQ) tend toEQT , thus there exists a
connecting orbitγ4 from ET to EQT and a connecting
orbit γ5 from EQ to EQT . Similarly to case (iv) we can
show that the domainA2 consists of connecting orbits
from ES to EQT .
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IV. CONCLUSION

We described the global attractor in all possible cases.
Depending on the three reproduction numbers, the global
attractor might have the following structure:
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• a singleton
• a one-dimensional set consisting of two equilibria and a

connecting orbit
• a two-dimensional set consisting of three or four equlib-

ria and connecting orbits between them.

The biological interpretation of our results is the following.
The reproduction numbersRi (i = 1, 2, 3) completely deter-
mine whether the infectious or the non-infectious parasites can
invade a human population. This is mathematically expressed
in the structure of the global attractors that we described. If
R1 ≤ 1 and R2 ≤ 1, then the population is safe from any
parasites. The implication for the control of the infection and
infestation is that to eradicate the disease only, we have to
decreaseR2 to be less than1, which is possible by reducing
βQ or increasingµ. To eliminate all the parasites, besides
decreasingR2 we also have to decreaseR1 (possible by
reducing βT or increasingθ). Decreasing onlyR1 is not
enough for the elimination of the parasites. The reproduction
numberR3 is a threshold parameter which shows whether all
the parasites become infectious or both infectious and non-
infectious parasites can be present in the population. The
transmission ratesβQ and βT can be effectively reduced

by vigorous monitoring and isolation of infested individuals,
while µ andθ can be increased by disinfestation treatment of
individuals.
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