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Abstract—We delineate a mathematical model for the depending on the reproduction numbers. We assume the
dynamics of the spread of ectoparasites and the diseaseqpresence of one disease and one ectoparasite species
transmitted by them. We present how the dynamics of \which is a vector transmitting this particular disease.
the system depends on the three reproduction numbers  The nyman population is divided into three compart-
b.elong'ng to three of the. fo‘."r possible equilibria and ments: susceptibles (i.e. those who can be infested by
gve a Complete. CharaCtenzaFlon of the structure of the both infectious and non-infectous vectors, denoted by
global attractor in each possible case depending on the X o
reproduction numbers. S(t)), those who are infected by non-infectious para-

_ _ sites (denoted by'(¢)) and those who are infested by
Keywordsectoparasites; global dynamics; global attrac- ;¢actious vectors (denoted b@(t)). We assume that
tors someone infested by non-infectious vectors can transmit
the parasites to susceptibles, while an individual infested
by infectious vectors transmits both the parasites and
Ectoparasites (e.g. lice, fleas, mites) cause a seriths disease to susceptibles. An individual infested by
problem in several parts in the worldl [2],! [4]. Ectoparinfectious vectors transmits the infection to individuals
asite infestations are often connected to the lack wifested by non-infectious vectors, i.e. a member of com-

hygiene and poor economical conditions, however, thggartmentI' can move to compartmeii upon adequate
presence is increasing in developed countries as wellcontact with someone from compartmépt We assume

The three louse species which transmit diseases aretth® a person is infected by the disease if and only
head louse, the body louse and the pubic louse. Théseis infested by infectious parasites. We suppose that
species are responsible for the spread of trench feviedividuals infested by infected parasites transmit the
epidemic typhus and relapsing fever. The flea specigisease at the same rate to susceptibles and to those who
which most commonly affect humans are the cat, tlae infested by non-infected parasites. We denote this
rat and the human flea. Fleas transmit plague, muritransmission rate by, andsr denotes the transmission
typhus, fleaborne spotted rickettsiosis. The transmissite for non-infectious vectors (to susceptibles). The
of these diseases is different from that of other vectamte of disinfestation is denoted hy for the infected
borne diseases, as it is carried out through the humssmpartment and b§ for the non-infected compartment.
contact network, which means that the spread of tNge denote by the natural birth and death rates, and we
vectors themselves is similar to that of a disease. = assume the disease is not fatal, thus the population size

In this paper we delineate a model for the dynamiés constant. In the model equations we use mass action
of ectoparasite-borne diseases and we describe the stincidence.
ture of the global attractors in the different situations We have the following system of differential equations
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(with all the parameters assumed to be positive): If we introduce a non-infectious infested individual into a
population in the equilibriunm, we obtain the reproduction
S'(t) = —BrSHT(t) — BoSH)Q(t) Humber 9
+0T(t) + pQ(t) + b —bS(t), R — Br(b+ p)
3= =—""""—"=.
T'(t) = BrSH)T(t) ) Bo(Be —n+9)
— BoQt)T(t) — 0T (t) — bT'(t), The following lemma is taken from [3].
Q) = BoS(H)Q(t) _ ITemma 2.1_: The_z equilibriumEgs always exist_s_. 'I_'he equi-
librium E7 exists if and onlyR; > 1. The equilibriumEg
+ BRT(t) — nQ(t) — bQ(?). exists if and only ifR, > 1. The equilibriumEor exists if

It can easily be seen that any solution with norfnd only if R, >1 and i3 > 1.
negative initial values remains non-negative for all for-

ward time. We can suppose that
Here we recall the main result ofl[3].

N(t) =5+ T +Q(t) =1 Theorem 3.1:Let X := {(S,7,0) e R3 : S+ T =1}

holds for the total population. The phase space of o#fd Xr = {(5,0,Q) € R} : S+ Q = 1} denote the
system isX := {(5,T,Q) € R: S+T4+Q= 1}. extinction sets forQ and T, respectively. The four equilibria
T + have the following global stability properties depending on the

[Il. STRUCTURE OF THEGLOBAL ATTRACTOR

[I. EQUILIBRIA, REPRODUCTIONNUMBERS reproduction numbers:
By solving the algebraic equations (i) Equilibrium Eg is globally asymptotically stable iR; <
1l andRy < 1.
0= —0rS"T" — BoS*" Q" + 0T 4+ n@Q* + b — bS™, (i) Equilibrium E7 is globally asymptotically stable o \
0=0rS*T" — Q" T — 0T — bT™ Xr if Ry > 1 and R, < 1. On Xp, Es is globally
* I N ; asymptotically stable.
0= 05 Q" + foQT" — pQ" — bQ", (i) If Ry > 1, Ry < 1andR; < 1, then E, is globally

asymptotically stable oX \ X and Eg is globally

we can determine the four equilibria of systf: asymptotically stable ok
Q.

Es =(1,0,0), (iv) If R, > 1, R3 < 1 andR; > 1, then Eg is globally
b+ 6 b+6 asymptotically stable orX \ Xq and Er is globally
Er = <ﬁT’ 1 - i »0) ; asymptotically stable orX,.

b+ bt (v) If Ro > 1, Rs > 1, thenEgr is globally asymptotically

Eqg = (, 0,1— ) , stable onX \ (Xq U Xr), Er is globally asymptotically
o Pa stable onX(, and Eq, is globally asymptotically stable

EQT:<9—N+5Q’b+ﬂ_9—M+5Q71_b+/i). on Xr.

Pr B Br B An equilibrium E is said to be globally asymptotically stable

) _ o on a sety if it is stable and for ally € Y the solution starting
Reproduction numbers have a clear biological interpretgg y converges taF ast — oo. Following the notation of

tion. We can obtain them by multiplying the number of newq, 1 1 7] by Mt we denote the set consisting of the states at
infections and the average length of the infectious period of §fe + of the solutions started from all of the pointse M.

infectious agent newly introduced into a population currently Definition 3.2: Let A € X be a compact invariant set. If

belng_m one (.)f the nghbna. . . o . A attracts each bounded subset Xf i.e. for any bounded
By introducing an infested, non-infectious individual into AubsetM c X and any neighbourhooll of A there exists a
population in the equilibriun¥s, we obtain the reproduction -, < oo such thatMt c U for all t > T, then A is called the
number By global attractor
Ry = b+ 0 Definition 3.3: The w-limit setof a pointx € X, denoted
w(x) consists of those elementsof X for which there
sts a real sequende,, } such that,, /' co andxt,, — y as
n — oo. The a-limit setis defined similarly witht,, \, —occ.
Ry — 57Q. In the following theorem we describe the structure of the
b+ p global attractor for systeni](1) in the five cases listed in

by introducing an infested and infectious individual into th%ii
same equilibrium we obtain the reproduction number

Calculating the expected number of secondary infectiongeorem 3.1.
caused by the introduction of an infectious infested individual Theorem 3.4:The global attracto for system[(1) has the

into a population in the equilibriumEr gives the same following structure:
reproduction numbeRs. (i) A={FEs}.
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Fig. 1. Representation of the flow and the attractors orltfgeplane.

(i) A ={FEs, Er}Uy, wherey, is a connecting orbit from We get the system
Eg to Er, which is actually the segment betweély
and E7 in the extinction spac&g. T'(t) = Br(1 = T(t) - QE)T()

(iiy A= {Es, Eg}Uys, wherey, is a connecting orbit from — BQ(t)T'(t) — 0T'(t) — bT'(t),
Es to Eo, which is actually the segment betweély (1) = _ _ @
anSdE i?]’the extinction Sp);Cé( ’ ) =L~ T(E) - QUE)Q)

Q T _ —

(IV) A= {Es, Er, EQ} Uyr Uy Uy U Ay, Wher6’}/3 is a + ﬁQQ(t)T(t) MQ(t) bQ(t)
connecting orbit fromEr to Eq, and.A; is the domain and the four equilibria
surrounded byEgs, Er, Eq, 1,y and s in the T'Q-
plane consisting of connecting orbits froy to Eq. Es =(0,0),

V) A ={Es,Er,Eq,Eqr} U~y U~y Uy U~vs U Ay, [ <1_ b+6 O)
where v4 is a connecting orbit fromEr to Egr, s T = Br )’
is a connecting orbit fromEg to Eqgr, and A, is the b+pu
domain surrounded b¥s, Er, Eq, Egr,71,72,74 and Eq = (07 1- ﬁ) ;
~s5 in the T'Q-plane consisting of connecting orbits from @
Es 10 Eor. EQT:<b+u_9—u+ﬂQ’1_b+u)_
Proof: Ba Br Bq

(i) As proved in Theorem 3.1 is globally asymptotically By standard linearization, we calculate the eigenvalues
stable in case (i), which means that the global attractor and eigenvectors of the Jacobian of the linearized system
is the singletonFs in this case. in the four equilibria. The details of the calculations are
For the proof of the remaining cases we reduce the sys- straightforward thus omitted, here we only discuss the
tem to two dimensions by substitutifgwith 1 -7 — Q. results and implications. The eigenvalues of the Jacobian
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(ii)

(i)
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of the linearized equation around the equilibridp are
A1 = —b—0+pBr = (b+6)(Ry —1) with corresponding
eigenvecto(1,0) and\; = —b—pu+0¢o = (b+p)(R2—

1) with corresponding eigenvectd®, 1). Linearizing at
the equilibriumE7r, one finds the eigenvalues = b +

60— Br = (b+0)(1 — Ry) with the eigenvector1, 0)

and Xy = —=b — p+ Bg = (b + p)(Rz — 1) with the

eigenvector

< (Bg + Br)(b+ 0 — Br) 1)
Br(Bo+pPr—20—0—p) )"

Linearization around the steady stdfk, gives the fol-
lowing eigenvalues of the Jacobiak; = b+ u — g =
(b+ p)(1 — Ry) with the eigenvector0,1) and Ay =
—0+p—Bo+(b+p)Br/fq = (Rs—1)Br /(R Rs) with
the eigenvecto(1, 0). Finally, if we linearize the system
around the equilibriumEgr, we obtain the eigenvalues
M =b+pu—pBgo = (b+p)(1— Ry) with corresponding
eigenvector

( (Bq + Br)(Bq(Bq +0) — bBr — u(Bg + Br)) 1)
Br(b(Bg + Br) — Ba(280 +0) + (26g + Br)w)’

and \; 0 —pu+ 06— b+ wpr/Bo = (1 -
R3)pr/(R2R3) with corresponding eigenvectdt, 0).

If Ry > 1andR, < 1thenFEgs has the stable eigenvector
(0,1) and the unstable eigenvect¢t,0). This means
that E5 has a one-dimensional stable manifold which
coincides with the invariant extinction spacér and

a one-dimensional unstable manifold which coincides
with the segmen{Es, Er) of the extinction spac&,,
while both of the eigenvectors &t are stabley; is the
connecting orbit fromEg to Er lying in Xg. If Ry =1
then the second eigenvaluelgs is equal to zero. In this
case, the equation fap’(t) takes the form

Q'(t) = —BQ*(t) <0

on X7, which means that all solutions started fro¥i-
tend to E5. Thus E5 has the same one-dimensional
stable and unstable sets as in the c&se# 1. From
Theorem 3.1 we know that all solutions started from
X \ Xr tend to Er, thus Er has a two-dimensional
stable set.

If Ry <1, Ry > 1 and R3 < 1 then E5 has the stable
eigenvector(1,0), and the unstable eigenvect(s, 1),
while (0,1) and (1,0) are both stable eigenvectors for
Eq. If Ry = 1then the equation fdf”(¢) takes the form

T'(t) = =BrT?(t) <0,

(iv)

(v)

is invariant: if we substitutel — (b + p)/8¢ into the
equation forQ’(t) we get@’(¢t) = 0. This means that
for R3 = 1 the center manifold belonging to the zero
eigenvalue coincides with this line. Fd¢s = 1, the
equation forT”(¢) has the form

T'(t) = —BrT?(t) < 0

on this line, which means that all solutions started from
this line tend to the equilibriunky. v, is the connecting
orbit from Eg to Eg lying in Xr. This shows the
statement of (iii).
In this case, the first eigenvector belongingHe loses
its stability, while the same vector becomes a stable
eigenvector forEr. Thus, Es has two unstable eigen-
vectors andEr has the stable eigenvect(r, 0) and an
unstable eigenvector. From Theorem 3.1 we know that
any solution started from the one-dimensional unstable
manifold of Er tends toEq, from which the existence
of a heteroclinic orbity; from Er to Eg follows. The
situation for E¢ is the same as in case (jii). We have
to show that.A; consists of heteroclinic orbits from
Eg to Eg. Let us take an arbitrary poing € A;.
From Theorem 3.1 we know that(p) = {Eg}. The
negative limit seta(p) exists and is non-empty as the
backward orbit is bounded by; U s U 3. From the
Poincaré—Bendixson Theorem we know thélp) can
only be an equilibrium point (as there are no periodic
orbits). We can exclud& as it has a two-dimensional
stable manifold. The unstable manifold Bf- coincides
with X, which is invariant and4; N Xg = 0, thus
a(p) ={Es}.
In this case, againFs has two unstable eigenvectors
and thus a two-dimensional unstable manifold. Similarly
to the previous casefr has a stable and an unsta-
ble eigenvector, thus having a one-dimensional stable
manifold and a one-dimensional unstable manifold. The
eigenvector (1,0) for Eqg is unstable, which means
that £y has a one-dimensional stable manifold and a
one-dimensional unstable manifolBgr has two stable
eigenvectors and thus a two-dimensional stable manifold.
From Theorem 3.1 we know that all solutions started
from X \ (X7 U Xg) tend to Eqr, thus there exists a
connecting orbity, from Er to Egr and a connecting
orbit 5 from Eg to Egr. Similarly to case (iv) we can
show that the domaimd, consists of connecting orbits
from Eg to Eqr.

]
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eigenvalue (which coincides witlkp) tend to Eg. If
R3 = 1 then the Jacobian of the linearized system at
Eq has a zero eigenvalue with eigenvectar0). The
line b
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IV. CONCLUSION

We described the global attractor in all possible cases.
Depending on the three reproduction numbers, the global
attractor might have the following structure:
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« a singleton by vigorous monitoring and isolation of infested individuals,
« a one-dimensional set consisting of two equilibria and&hile ;» and# can be increased by disinfestation treatment of
connecting orbit individuals.

« a two-dimensional set consisting of three or four equlib-
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