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Abstract—This paper is devoted to the mathematical
analysis of a model arising from biology, consisting of dif-
fusion and chemotaxis with volume filling effect. Motivated
by numerical and modeling issues, the global existence in
time and the uniqueness of weak solutions to this model
is investigated. The novelty with respect to other related
papers lies in the presence of a two-sidedly nonlinear de-
generate diffusion and anisotropic heterogeneous diffusion
tensors, where we prove global existence and uniqueness
under further assumptions. Moreover, we introduce and
we study the convergence analysis of the combined scheme
applied to this anisotropic Keller-Segel model with general
tensors. Finally, a numerical test is given to prove the
effectiveness of the combined scheme.

Keywords-Degenerate parabolic equation ; heteroge-
neous and anisotropic diffusion; global existence of so-
lutions; combined scheme.

I. INTRODUCTION

Chemotaxis, the directed movement of cells in re-
sponse to chemical gradients, plays an important role in
many biological fields, such as embrogenesis, immunol-
ogy, cancer growth and wound healing. This behavior
enables many living organisms to locate nutrients, avoid
predators or find animals of the same species. For ex-
ample, bacteria often swim towards higher concentration
of oxygen to survive (see [7]). In the following, we
investigate a system consisting of the parabolic Keller-

Segel equations with general tensors,{
∂tN −∇ ·

(
S(x)

(
a(N)∇N − χ(N)∇C

))
= 0,

∂tC −∇ · (M(x)∇C) = g(N,C),
(1)

where Ω is a bounded domain in Rd; d ∈ N∗ with bound-
ary ∂Ω. This system of equations is supplemented by the
following boundary conditions on Σt= ∂Ω× (0, T ),

S(x)a(N)∇N · η = 0, M(x)∇C · η = 0, (2)

where ν is the exterior unit normal to ∂Ω. The initial
conditions on Ω, are given by,

N(x, 0) = N0(x), C(x, 0) = C0(x). (3)

Here N and C denote respectively the cell density and
the concentration of a chemical. Moreover, a(N) denotes
the density-dependent diffusion coefficient and χ(N)
is usually written in the form χ(N) = Nh(N) where
h is commonly referred as a chemotactic sensitivity
function. S(x) and M(x) are considered as general
tensors which may be anisotropic and heterogeneous.
In the model (1), the cell density N diffuses and swims
upwards chemical gradients. In addition to that, the
chemical C also diffuses where g(N,C) is the rate of
production and consumption of the chemical.

This article is concerned with the global existence
in time of weak solutions to the model (1), for any
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space dimension, in the presence of anisotropic and
heterogeneous tensors, two-sidedly nonlinear degenerate
diffusion and modified chemotactic sensitivity χ. The
techniques of the proof of global existence are essentially
those designed by [4] and [5]. Under further assumptions
and in the spirit of the duality method used in [8],
the uniqueness of these weak solutions is guaranteed.
Moreover, in order to discretize our model (1), it is well-
known that classical finite volume methods not permit
to handle anisotropic tensors in the diffusive terms but
it is very useful, especially the technique ”upwind”, to
discretize the convective term since it does not allow
instabilities in the numerical solution. The intuitive idea
is hence to combine two numerical methods (see [2],
[3]) by discretizing the diffusive terms with the finite
element method enabling the discretization of anisotropic
diffusion tensors without any restrictions on the meshes
and the other terms with the finite volume method
since we avoid numerical instabilities in the convection-
dominated regime. Finally, a numerical test will be given
to illustrate the effectiveness of our combined scheme
applied to the anisotropic Keller-Segel model (1).

II. SETTING OF THE PROBLEM

Let us now state the assumptions on the data we
will use in the sequel, together with the main results
obtained in this paper. We assume that χ(0) = 0
and the chemotactical sensitivity χ(N) vanishes when
N ≥ Nm. This threshold condition has a clear biological
interpretation called the volume-filling effect. In fact, the
effect of a threshold cell density or a volume filling
effect has been also taken into account in the modeling
of chemotaxis phenomenon in [9]. Upon normalization,
we can assume that the threshold density is Nm = 1.
The main assumptions are:

χ : [0, 1] 7−→ R is continuous and χ(0) = χ(1) = 0 ,

a : [0, 1] 7−→ R+ is continuous,

a(0) = a(1) = 0 and a(s) > 0 for 0 < s < 1 . (4)

A standard example for χ is,

χ(N) = N(1−N); N ∈ [0, 1] . (5)

The positivity of χ means that the chemical attracts the
cells; the repellent case is the one of negative χ. In
addition to that, will assume that the rate g is linear,

g(N,C) = αN − βC; α, β ≥ 0 . (6)

The permeabilities S, M : Ω −→ Md(R) where
Md(R) is the set of symmetric matrices d× d, verify:

Si,j ∈ L∞(Ω), Mi,j ∈ L∞(Ω), ∀i, j ∈ {1, .., d} , (7)

and there exist cS ∈ R∗+ and cM ∈ R∗+ such that a.e
x ∈ Ω, ∀ξ ∈ Rd,

S(x)ξ · ξ ≥ cS |ξ|2, M(x)ξ · ξ ≥ cM |ξ|2 . (8)

Definition 2.1: Assume that 0 ≤ N0 ≤ 1, C0 ≥ 0 and
C0 ∈ L∞(Ω). A couple (N,C) is said to be a weak
solution of (1) if,

0 ≤ N(x, t) ≤ 1, C(x, t) ≥ 0 a.e. in QT = Ω× [0, T ],

N ∈ Cw([0, T ];L2(Ω)), ∂tN ∈ L2(0, T ; (H1(Ω))
′
) ,

A(N) :=

∫ N

0
a(r)dr ∈ L2(0, T ;H1(Ω)),

C ∈ L∞(QT ) ∩ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)) ,

∂tC ∈ L2(0, T ; (H1(Ω))
′
),

and (N,C) satisfy,∫ T

0
< ∂tN,ψ1 >(H1)′,H1 dt+∫∫

QT

(
S(x)a(N)∇N−S(x)χ(N)∇C

)
·∇ψ1 dxdt = 0 ,∫ T

0
< ∂tC,ψ2 >(H1)′,H1 dt+

∫∫
QT

M(x)∇C · ∇ψ2 dxdt

=

∫∫
QT

g(N,C)ψ2 dxdt ,

for all ψ1, ψ2 ∈ L2(0, T ;H1(Ω)), where
Cw(0, T ;L2(Ω)) denotes the space of continuous
functions with values in (a closed ball of) L2(Ω)
endowed with the weak topology.

Our first result is the following existence Theorem of
weak solutions proved by using a technique of semi-
discretization in time (see [4]) for the regularized non-
degenerate problem associated to (1). Next, when the
parameter of regularization tends to zero, a similar
strategy as in [5] will be followed to achieve the proof.

Theorem 2.1: Assume that 0 ≤ N0 ≤ 1 and C0 ≥ 0
a.e. in Ω, C0 ∈ L∞(Ω). Then, the system (1) has a
global weak solution (N,C) in the sense of Definition
2.1.

Our second result is the following Theorem.
Theorem 2.2: Under the assumptions of Theorem 2.1,

and assume that the functions A and χ are of class C1

and if there exists a constant C > 0 such that,

(χ(N1)− χ(N2))2 ≤ C(N1 −N2)(A(N1)−A(N2)),

∀N1, N2 ∈ [0, 1] . (9)
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Then the system (1) has a global unique weak solution.
Outline of the proof: It relies on a classical duality

technique. We introduce the subset L2
0(Ω) = {w ∈

L2(Ω),
∫

Ωw dx = 0} and we denote by Nw the unique
solution to {

−∇ ·
(
S(x)∇Nw

)
= w

S(x)∇Nw · η = 0
. (10)

This dual problem (10) and similar guidelines of [8]
(subsection 2.2) are followed to apply Gronwall Lemma
and to prove the uniqueness statement of Theorem 2.2.

In fact, we can give a useful sufficient condition which
implies (9). Indeed, by a straight application of the mean
theorem applied to χ and A which are C1-functions, we
can rewrite (9) as follows,

(χ(N1)−χ(N2))2 =
(χ′(ξ))2

a(ξ1)
(N1−N2)(A(N1)−A(N2)) .

Then it amounts to check the following sufficient condi-
tion to prove (9),

∃C > 0; max
ξ,ξ1∈]0,1[

(χ′(ξ))2

a(ξ1)
≤ C . (11)

This sufficient condition is also mentioned in
(
[8],

Proposition 4
)

for diffusion coefficients with one point
degeneracy.

Example. In the model (1), if a(u) = u(1 − u) and
χ(u) = (u(1−u))β then the weak solution of the system
(1) is unique provided β ≥ 3

2 . A simple computation is
left to the reader to check the sufficient condition (11).

III. NUMERICAL SCHEME

This section is devoted to the formulation of a
combined scheme for the anisotropic Keller-Segel
model (1). First, we will describe the space and time
discretizations, define the approximation spaces and
then we will introduce the combined scheme.

Let Ω be an open bounded subset of Rd with d = 2
or 3. In order to discretize the problem (1), we consider
a family Th of meshes of the domain Ω, consisting of
disjoint closed simplices such that Ω̄ = ∪K∈ThK̄ and
such that if K,L ∈ Th, K 6= L, then K ∩L is either an
empty set or a common face or edge of K and L. We
denote by Eh the set of all sides, by E inth the set of all
interior sides, by Eexth the set of all exterior sides.
The size of the mesh Th is defined by h:=
size(Th)=maxK∈Th diam(K), which has the sense of an
upper bound for the maximum diameter of the control
volumes in Th. We also define a geometrical factor,

linked with the regularity of the mesh, by making the
following shape regularity assumption on the family of
triangulations {Th}h: There exists a positive constant kT ;

min
K∈Th

|K|
(diam(K))d

≥ kT , ∀h > 0 . (12)

We also use a dual partition Dh of disjoint closed
simplices called control volumes of Ω such that Ω̄ =
∪D∈Dh

D̄. There is one dual element D associated with
each side σD = σK,L ∈ Eh. We construct it by
connecting the barycenters of every K ∈ Th that contains
σD through the vertices of σD. As for the primal mesh,
we define Fh, F inth and Fexth respectively as the set of
all dual, interior and exterior mesh sides. For σD ∈ Fexth ,
the contour of D is completed by the side σD itself. We
refer to the Figure 1 for the two-dimensional case.

Fig. 1. Triangles K,L ∈ Th and dual volumes D, E ∈ Dh

associated with edges σD , σE ∈ Eh.

We use the following notations:
• |D|= meas(D)= d-dimensional Lebesgue measure of
D and |σ| is the (d−1)-dimensional measure of σ.

• PD is the barycenter of the side σD.
• N (D) is the set of neighbors of the volume D.
• Dinth and Dexth are respectively the set of all interior

and boundary dual volumes.
The time discretization is the sequence of discrete times
tn = n∆t for n ∈ N, where ∆t > 0 is a given
time-step. In the sequel, the exponent n denotes the
approximation at time tn. Next, we define the following
finite-dimensional spaces:

Xh := {ϕh ∈ L2(Ω); ϕh|K is linear ∀K ∈ Th, ϕh
is continuous at the points PD, D ∈ Dinth } ,
X0
h := {ϕh ∈ Xh; ϕh(PD) = 0, ∀D ∈ Dexth } .

The basis of Xh is spanned by the shape functions ϕD,
D ∈ Dh, such that ϕD(PE) = δDE , E ∈ Dh, δ being
the Kronecker delta. We recall that the approximations
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in these spaces are nonconforming since Xh 6⊂ H1(Ω).
Indeed, only the weak continuity of the solution is
provided through the faces of the mesh and therefore
the solution may be discontinuous on the faces. We equip
Xh with the seminorm,

||Nh||2Xh
:=

∑
K∈Th

∫
K
|∇Nh|2dx , (13)

which becomes a norm on X0
h.

The approximation of the flux S(x)∇C · ηD,E on
the interface σD,E is denoted by δCD,E . Now, we have
to approximate S(x)χ(N)∇C · ηD,E by means of the
values ND, NE and δCD,E that are available in the
neighborhood of the interface σD,E . To do this, we use
a numerical flux function G(ND, NE , δCD,E). One can
find in [1] a way to construct this numerical flux G.

Finally, a combined finite volume-nonconforming fi-
nite element scheme for the discretization of the problem
(1) is given by the following set of equations:
For all D ∈ Dh,

N0
D =

1

|D|

∫
D
N0(x)dx, C0

D =
1

|D|

∫
D
C0(x)dx, (14)

and for all D ∈ Dh, n ∈ {0, 1, ..., N},

|D|
Nn+1
D −Nn

D

∆t
−
∑
E∈Dh

SD,EA(Nn+1
E )

+
∑

E∈N (D)

G(Nn+1
D , Nn+1

E ; δCn+1
D,E ) = 0 , (15)

|D|
Cn+1
D − CnD

∆t
−
∑
E∈Dh

MD,EC
n+1
E = |D|g(Nn

D, C
n+1
D ) .

(16)
The matrix S (resp.M), of elements SD,E (resp.MD,E)
for D,E ∈ Dinth , is the diffusion matrix which is the
stiffness matrix of the nonconforming finite element
method. So that:

SD,E = −
∑
K∈Th

(S(x)∇ϕE ,∇ϕD)0,K . (17)

Moreover, δCn+1
D,E denotes the approximation of

S(x)∇C · ηD,E on the interface σD,E :

δCn+1
D,E = SD,E(Cn+1

E − Cn+1
D ) . (18)

Definition 3.1: Using the values of Nn+1
D ,∀D ∈ Dh

and n ∈ [0, N ], we will define the approximate finite
volume solution Ñh,∆t defined as piecewise constant on

the dual volumes in space and piecewise constant in time,
such that:

Ñh,∆t(x, 0) = N0
D for x ∈ D, D ∈ Dh ,

Ñh,∆t(x, t) = Nn+1
D for x ∈ D, D ∈ Dh, t ∈]tn, tn+1] .

Now, we state the discrete maximum principle and
a convergence result of the combined scheme under the
assumption that all transmissibilities coefficients, defined
in (17), are positive:

SD,E ≥ 0 and MD,E ≥ 0, ∀D ∈ Dh, E ∈ N (D) .
(19)

Recall that 0 ≤ N0 ≤ 1 and C0 ≥ 0 a.e. in Ω. We have
the following classical Proposition proved by a simple
induction argument as in [3].

Proposition 3.1: (Discrete maximum principle)
Under the assumption (19), one has,

0 ≤ Nn+1
D ≤ 1, Cn+1

D ≥ 0, ∀D ∈ Dh, n ∈ {0, 1, .., N}.

Theorem 3.1: (Convergence of the scheme)
Assume (4) to (8). Consider C0 ∈ L∞(Ω), C0 ≥ 0 and
0 ≤ N0 ≤ 1 a.e. on Ω. Under the assumption (19),
1) There exists a solution (Nh, Ch) of the discrete system
(15)-(16) with initial data (14).
2) Any sequence (hm)m decreasing to zero possesses a
subsequence such that (Nhm

, Chm
) converges a.e. on QT

to a weak solution (N,C) of (1).
Outline of the proof. Adding to Proposition 3.1, we

establish estimates on the discrete gradient of the func-
tion A(Ñh,∆t) and Ñh,∆t and these discrete properties
on the diffusive term allow to construct a priori estimate
with respect to the norm Xh defined in (13). Then, con-
structing estimates in time and in space imply that the se-
quence

(
A(Ñh,∆t)

)
h,∆t

satisfies the assumptions of the
Kolmogorov’s compactness criterion, and consequently(
A(Ñh,∆t)

)
h,∆t

is relatively compact in L2(QT ). This
implies the existence of subsequences of

(
A(Ñh,∆t)

)
h,∆t

which converges strongly to some function Γ ∈ L2(QT ).
Using the monotonicity of A, we get Γ = A(N).
Moreover, due to the space translate estimate,

(
[6],

Theorem 3.10
)

gives that A(N) ∈ L2(0, T ;H1(Ω)).
As A−1 is well defined and continuous, applying the
L∞ bound on Ñh,∆t and the dominated convergence
theorem of Lebesgue to Ñh,∆t = A−1(A(Ñh,∆t)), there
exists a subsequence of Ñh,∆t which converges strongly
in L2(QT ) and a.e. in QT to the same function N . Then,
we conclude by showing that the limit couple (N,C) is
a weak solution of the continuous problem (1).
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Fig. 2. Initial condition for the cell density N0 (left) and for the
concentration of the chemo-attractant C0 (right) on the dual mesh
Dh

IV. NUMERICAL TEST

Through this numerical example, we would like to
illustrate the effectiveness of the combined scheme for
anisotropic Keller-Segel model (1). All the computations
for this new numerical scheme have been implemented
using the software package Fortran. The algorithm used
to compute numerical solution of the discrete problem is
the following: at each time step, we first calculate Cn+1

solution of the linear system given by the equation of
(16) and next we compute Nn+1 as the solution of the
nonlinear system defined by the first equation of (15).
To this end, a Newton algorithm is implemented to ap-
proach the solution of nonlinear system and a bigradient
conjugate method to solve linear systems arising from
the Newton algorithm process. We will provide this test
on the dual mesh Dh of a refined initial admissible mesh
Th, where the assumption (19) is satisfied.

In this test, we consider the following anisotropic
diffusion tensors as,

S = M =

[
8 −7
−7 20

]
.

Further, dt = 0.0005, α = 0.01, β = 0.05, A(N) =
D(N

2

2 −
N3

3 ) with D = 0.005, χ(N) = cN(1 − N)2

with c = 0.001. Finally, the diffusion coefficient of the
chemo-attractant is D1 = 10−6. The initial conditions
are defined by region. The initial density is defined as
N0(x, y) = 1 in the square (x, y) ∈

(
[0.45, 0.55] ×

[0.45, 0.55]
)

and 0 otherwise. The initial chemoattrac-
tant is defined as C0(x, y) = 5 in the union of four
squares (x, y) ∈

(
[0.2, 0.3] × [0.7, 0.8]

)
∪
(
[0.2, 0.3] ×

[0.2, 0.3]
)
∪
(
[0.7, 0.8]×[0.2, 0.3]

)
∪
(
[0.7, 0.8]×[0.7, 0.8]

)
and 0 otherwise (see Figure 2). In the isotropic case
(S = M = Id), the cells diffuse towards the four
regions of the chemoattractant. In this test case and under
the influence of the anisotropic diffusion, we observe in

Fig. 3. Test 1- The cell density (N ), at time t = 1 with 0 ≤ N ≤
0.1752 (left), at time t = 5 with 0 ≤ N ≤ 0.08036 (right) .

Fig. 4. Test 1- The cell density (N ), at time t = 10 with 0 ≤ N ≤
0.1456 (left), at time t = 15 with 0 ≤ N ≤ 0.1666, at time t = 20
with 0 ≤ N ≤ 0.1626 (right) .

Figures 3 and 4 the movement of the cells only towards
two chemoattractant regions during the stage of evolution
in time of the cell density.

V. CONCLUSION

In this article, we have explored the relevance of the
Keller-Segel equations in the modeling of anisotropic
chemotactic cell migration. Motivated by numerical sim-
ulations, we have proceeded to prove results pertaining
to the existence and the uniqueness of global weak
solutions of the anisotropic Keller-Segel model with
general diffusive tensors and the convergence analysis
of a new combined scheme introduced. This numerical
scheme is a compromise between the nonconforming
finite elements, enabling in particular the use of general
meshes and the discretization of anisotropic diffusion
tensors, and between the finite volumes enabling to
avoid spurious oscillations in the convection-dominated
regime. Finally, a numerical test was given to illustrate
the combined scheme proposed.
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