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Abstract—In this paper we study the one-sided
Hausdorff distance between the shifted Heaviside
step–function and the transmuted Stannard growth
function. Precise upper and lower bounds for the
Hausdorff distance have been obtained. We present
a software module (intellectual property) within the
programming environment CAS Mathematica for the
analysis of the growth curves. Numerical examples,
illustrating our results are given, too.
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I. INTRODUCTION AND PRELIMINARIES

The Stannard function finds numerous applica-
tions in many scientific fields, including population
dynamics, bacterial growth, population ecology,
plant biology, chemistry, agriculture, demography,
financial mathematics, statistics and fuzzy set the-
ory [1]–[5].

Definition 1. For γ ∈ R define the shifted Heavi-
side step function as [12]:

hγ(t) =


0, if t < 0,

[0, 1], if t = γ,

1, if t > γ.

(1)

Definition 2. Define the shifted Stannard growth
function S(t) as [1]–[5]:

S(t) =
1(

1 + e
−(β+k(t−γ))

m

)m , (2)

where β, k and m ∈ R are the growth parameters.
We note that the slope of (2) at t = γ is equal to:

ke−
β
m(

1+e−
β
m

)m+1 .

Definition 3. A random variable T is said to
have a transmuted distribution if its cumulative
distribution function (cdf) is given by [6], [7]:

G1(t) = (1 + λ)F1(t)− λF 2
1 (t), |λ| ≤ 1, (3)

where F1(t) is the cdf of the base distribution.
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”λ - transmuting” of (cdf) is a familiar technique
from the field of probability distributions with
application to insurance mathematics.

Definition 4. The Hausdorff distance ρ(f, g) be-
tween two interval functions f, g on Ω ⊆ R, is
the distance between their completed graphs F (f)
and F (g) considered as closed subsets of Ω × R
[8], [9], [12].

More precisely, we have

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, (4)

sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R2, e. g. the maximum
norm ||(t, x)|| = max{|t|, |x|}; hence the distance
between the points A = (tA, xA), B = (tB, xB)
in R2 is ||A−B|| = max(|tA − tB|, |xA − xB|).

Sigmoidal growth curves typically have three
parts (phases, time intervals): lag, log and station-
ary parts. It is a challenging question to charac-
terize mathematically these phases. The lag time
(interval) is practically important in many medical
and biotechnological applications as this time is
responsible for the acceleration or inhibition of the
process and the possibility of controlling the lag
time depends on the understanding of the hidden
mechanisms of the corresponding process [10],
[11].

Usually the lag time is defined by means of the
uniform distance between the sigmoidal function
and the induced cut function. We propose a new
definition for the lag time by means of the Haus-
dorff distance between the sigmoidal function and
the induced step function.

In this work we prove estimates for the one–
sided Hausdorff approximation of the shifted
Heaviside step–function by transmuted Stannard
growth function.

Let us point out that the Hausdorff distance is
a natural measuring criteria for the approximation
of bounded discontinuous functions [12], [13].

Fig. 1. Approximation of the shifted Heaviside step function
by transmuted Stannard growth function for the following
data: k = 16, m = 0.52, β = 0.01, tr = 5; Hausdorff
distance d = 0.0801797.

Fig. 2. Approximation of the shifted Heaviside step function
by transmuted Stannard growth function for the following
data: k = 26, m = 2.1, β = 1, tr = 5; Hausdorff distance
d = 0.112237.

II. MAIN RESULTS

For γ, β,m ∈ R consider the following trans-
muted Stannard function

S∗(t) =
1 + λ(

1 + e
−(β+k(t−γ))

m

)m− (5)

λ(
1 + e

−(β+k(t−γ))
m

)2m , |λ| ≤ 1.
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Function S∗(t) from (5) satisfies:

S∗(γ) =
1 + λ(

1 + e−
β

m

)m − λ(
1 + e−

β

m

)2m =
1

2

(6)
hence

λ =
0.5(1 + z)2m − (1 + z)m

(1 + z)m − 1
; z = e−

β

m . (7)

We study the Hausdorff approximation d of
the Heaviside step function hγ(t) by the trans-
muted Stannard function (5)–(7) and look for an
expression for the error of the best one–sided
approximation.

Let

A = (1 + λ)
(

1 + e−
β

m

)−m
− λ

(
1 + e−

β

m

)−2m
B = 1− 2e−

β

m

(
1 + e−

β

m

)−1−2m
kλ

+ e−
β

m

(
1 + e−

β

m

)−1−m
k(1 + λ), k ∈ R.

(8)

The following Theorem gives upper and lower
bounds for d.

Theorem 2.1 For the Hausdorff distance d
between the function hγ(t) and the transmuted
Stannard function (5)–(7) the following inequal-
ities hold for |λ| ≤ 1 and B > 4:

dl =
A

2B
< d < A

ln(2B)

2B
= dr. (9)

Proof. We need to express d in terms of k, β and
m. The Hausdorff distance d satisfies the relation

F (d) := S∗(γ − d) =
1 + λ(

1 + e−
β−kd
m

)m− (10)

λ(
1 + e−

β−kd
m

)2m − d = 0.

Consider the function

G(d) = A−Bd.

Fig. 3. The functions F (d) and G(d) for k = 16, m = 0.52,
β = 0.01, tr = 5.

By means of Taylor expansion we obtain

G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as
O(d2) (see Fig. 3). Further, for |λ| ≤ 1 and B > 4
we have

G(dl) = A
2 > 0,

G(dr) = A (1− 0.5 ln(2B)) < 0.

This completes the proof of the theorem.

Some computational examples using relations
(9) are presented in Table 1. The last column of
Table 1 contains the values of d computed by
solving the nonlinear equation (10).

TABLE I
BOUNDS FOR d COMPUTED BY EQUATION (9) FOR

VARIOUS β , k, m.
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Fig. 4. A simple module implemented in CAS Mathematica for the computation and visualization of the Hausdorff distance
between the Heaviside step function and the transmuted Stannard growth function.
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III. CONCLUSION REMARKS

New estimates for the Hausdorff distance be-
tween an interval Heviside step function and its
best approximating Stannard function are obtained.

On Fig. 1 and Fig. 2 appropriate illustrations of
some approximations of the shifted Heaviside step
function by transmuted Stannard growth function
are given.

We propose a software module within the pro-
gramming environment CAS Mathematica for the
analysis of the considered growth curves (see Fig.
4). The module offers the following possibilities:

i) generation of the shifted Stannard curve under
user-defined values for k,m, β;

ii) automatic check of the condition |λ| ≤ 1
that guarantees the existence of sigmoidality of the
transmuted Stannard curve;

iii) software tools for animation and visualiza-
tion.

The Hausdorff approximation of the interval
step function by the logistic and other sigmoidal
functions is discussed from various approximation,
computational and modelling aspects in [14]–[27].
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