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Abstract—In this paper we use Boolean frame-
work to redefine coupled cell networkss, originally
described in [2]. We also analyze some of the impor-
tant properties of Boolean coupled cell networkss.

In the second part of this paper we focus on
properties of a quotient networks. We redefine the
concept of a quotient to suit Boolean network frame-
work. Next, we investigate in details the networks
in which two-cell bidirectional ring and three-cell
bidirectional ring arise as quotients.

Keywords-Boolean networks; coupled cell net-
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I. INTRODUCTION

During the 1980s and early 1990s, Martin Golu-
bitsky and Ian Stewart formulated and developed a
theory of coupled cell networkss (CCNs) [2]. Their
research was primarily focused on quadrupeds’
gaits. Since they were particularly interested in
the change of synchrony between four legs of
an animal, they needed a special framework to
describe this phenomenon. For example, they were
interested in how does the synchrony of four legs
change when the animal speeds up from walk to
gallop.

The most important concept in the CCN theory
is a cell. The cell captures the dynamics of one
unit of the system (for example, one leg of an
animal) and the dynamical system consists of

many identical cells connected to each other. Each
cell has its own state space and evolution equa-
tion(s). Even though models based on identical
cooperating units are common in many areas —
especially in biology, ecology and sociology, [4],
(5], [6l, [7], [8] — the CCN setup helps to formulate
questions in terms of symmetry and synchrony
rather than system evolution as a whole.

In this paper, we redefine coupled cell networkss
using the framework of Boolean networks [9],
[10]. This moves the theory to a new setting.
As expected, some phenomena turns out to be
very similar as for continuous networks and some
others do not. In addition we study the phenomena
specific to Boolean networks and not arising in
continuos dynamical systems.

We note that the Boolean coupled cell networkss
are a subclass of Boolean networks, which dif-
fers both from the original Kaufman’s Boolean
switching nets [9]], and from cellular automata
[23]], [24]. In his work [9], Kaufman focused on
networks with topology based on k—regular graph,
which makes the topology similar to that of CCNss,
however, he chose update rules for each of the
nodes randomly. In contrast, in this paper we
assume that the update rules for each cell-node
in the network are identical. In Cellular Automata
the update rules are the same for every cell-node
in the network, and this makes Cellular Automata
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similar to Boolean CCNs. The difference is that a
state of a cell in a cellular automaton depends only
on the states of its immediate neighbors, and this
formulation does not allow for any irregularity in
the network structure. A cell in a cellular automa-
ton might not depend on the cells that are far away
from its physical location on the grid. In contrast,
such a dependence can occur in Boolean CCNs.
Hence, Boolean CCNs share some characteristics
with Boolean switching nets and cellular automata,
and in fact, can be treated as a cross between these
two species of Boolean networks.

The main result in this paper is the analysis of
the Boolean CCNs in which two cell bidirectional
ring and three-cell bidirectional ring arise as a
quotient.

This paper is organized as follows. Section
contains the definitions of the concepts needed to
describe a Boolean network, and it also containts
the definition of coupled cell networks. Section
describes the main problem we want to address in
this paper. Section points out the differences
between continuous and Boolean dynamics. In the
Section [V| we define the quotient network, and
form the rules for taking quotients. In this section
we study our first example case, the networks
for which two cell bidirectional ring arise as a
quotient. Section provides a biological model
in which the ideas from the previous sections
are used. Section is devoted to analyzing the
networks for which three-cell bidirectional ring
arise as a quotient. In the Section we present
conclusions and ideas for the future.

II. PRELIMINARIES

A. Boolean functions and dynamical systems

The definitions contained in this subsection
come from the classic literature on Boolean func-
tions and networks, see [9], [10], [12], [IL5]

By Boolean function we understand a function
f: Fg — Fo. Let z; € Fo, ¢ = 1,...,n. The
Boolean function can be represented in the form

flxy, o, ... xy).

A Boolean dynamical system is a set of n
ordered Boolean functions from F3 to Fo. First
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function is an update function for the first vari-
able, second function is an update function for
the second variable, and so on. Thus, a Boolean
dynamical system is defined as F' : Fy — 3
where

F=(f1,f2--sfn)
= F(f1($1,$2, - . 7:CTL))

There is some ambiguity in the literature on
how multiplication and addition are defined in
the Boolean algebra. For example, Francis Robert
[10] defines 1 * 1 = 0, whereas other authors
(for example [[18]]) consider 1 x 1 to be 1. Except
of adding and multiplying variables, we are also
allowed to add 1, which is equivalent to negation.
Throughout this paper we use the multiplication
and addition tables given in Figure [I]

'axn)a"wfn(xh'r%"

x| yllxty  x|y|xty
1)1 0 1]1 1
110 1 110 O
01 1 011 0
00 0 010 O

X || x+1

1 0

0 1

Fig. 1. Multiplication and addition in Fo

Multiplication can be also expressed with the
logical operator AND (A). If X and Y are Boolean
variables, then X AND Y = 1 if and only if the
value of both X and Y is 1 (the logical value is
true). The truth table is then identical to the one
for multiplication.

The addition operation is equivalent to XOR
(V). X XORY is true only when either X is true
or Y is true, and false when both are true or both
are false.

Negation (—) is equivalent to adding 1 to vari-
able. X+1=0if X =1and X4+1=1if X =0.
By adding 1 we flip the value of the variable.

Hence, the alternative formulation with AND,
XOR and NEG is

A Boolean dynamical system is a discrete time
system. For a system of a size n there are 2"
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x‘nyXORy x‘nyANDy
1|1 0 1|1 1
110 1 10 0
01 1 0]1 0
00 0 00 0

x || NEG x

1 0

0 1

Fig. 2. Multiplication and addition in [y

possible states of a system. Throughout this paper
we will assume that all variables are updated
simultaneously.

While classifying Boolean dynamical systems,
we are interested in two phenomena. The first one
is the occurrence and the number of steady states
(attractors). The steady state (SS) of a Boolean
system is a state (x1, x9, ..., Z,) which updates to
itself, i.e. F(x1,22,...,2n) = (T1,22,...,Tp).

The second phenomenon is the number and
length of cycles. Let (x1,x2,...,x,) be a starting
state. If after p > 1 updates the system returns to
the starting state, we say that a system has a cycle
of length p — 1.

Unlike for continuous systems, we do not have
the tools coming from bifurcation theory. Most
methods are based on statistics, algebra, combi-
natorics and topology, see [9l], [12], [13], [14].
We notice that a Boolean dynamical system must
either have a steady state or a cycle or both;
there is no possibility of oscillations and chaotic
behaviors, which occur for continuous networks.

B. Coupled cell networkss: idea

The idea of a coupled cell networks is to look
at the dynamical system not as a whole, but rather
to look at the dynamics of particular members
of the system. In order to do so, we divide the
system into separate entities called cells. The cell
captures one one or more differential equations.
The dynamics of the cell depends upon the cell
itself (self-variable(s)) and couplings (variables of
other cells). There may be more than one type of
coupling since cells may interact with each other
in many different ways.
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We can easily represent a coupled cell networks
as a graph. The vertices of the graph are the cells,
and couplings are the edges of the graph. The
different types of couplings are shown as different
types of edges.

C. Boolean coupled cell networks: formal defini-
tions

Definition 1. By cell we understand an entity
of the n-dimensional Boolean dynamical system
together with its update function.

Definition 2. By coupling we understand an in-
fluence that one cell has on the dynamics of the
other cell.

In this paper, we will consider only regular
networks. The cells of regular network are all
identical and there is only one type of coupling.
We assume that every cell has the same number
of couplings (this is enforced by the property of
all cells being identical). Every cell has only one
self-variable.

We assume that if some number of cells couple
to cell A, then we can permute the variables of
coupling cells and we get the same equation up to
permutation of variables. The last statement comes
from the assumption that there is only one type of
coupling. The statement can be formalized as

Tk = f (@, Thts -~ Thm)

where x1,..., Ty, are the variables of coupling
cells, and overline indicates that we can permute
them. By convention, we write the self-variable
in the first position. Here f stands for a function
template. Since every cell is governed by the
same equation, the template is the same, however,
since cells have different couplings (but always the
same number of couplings) the functions are not
identical.

Thus, the regular Boolean coupled cell networks
is represented as
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1 = f(x1, %10, -, Tim),
xo = (22,721, -, T2m),
Tn = f(xnal‘nla .. -afEnm)-

The network shown above has valency m, which
means that every cell receives inputs from m other
cells.

In this paper we consider only update functions
whose formula depends on the variable of self and
all the variables of the couplings. For example, in
a valency 1 network a function

f(z1,22) = 1 + X2

is a valid function, whereas

flx1,22) = @2

is not a valid function. We call the valid functions
admissible functions.

In order to fully define Boolean coupled cell
networks we need a function template and a graph
of connections.

Example 1. Consider function scheme F(x,y) =
r+x*xy and a graph of connection (further called
architecture graph) shown in Figure 3

Fig. 3. Example 1: a graph of connections in a regular
Boolean CCN

Using the template and the graph, we obtain

Tl = T1+ X1 * 2y,
Ty = X2+ X2 * T,
r3 = X3+ T3*Tq,
Ty =4+ Ty *2q.

Biomath 6 (2017), 1703227, http://dx.doi.org/10.11145/j.biomath.2017.03.227

Lemma 1. The number of function templates that
could be used in a Boolean CCN with n cells and
valency m < n is given as 22™+?

Proof: We consider the transition table as-
sociated to the Boolean CCN. Every cell in this
network is influenced by m other cells. Hence,
the template function for this network depends on
m + 1 variables (variable of self and m variables
of couplings). For a given cell, the function is
f@, g1, s Ym)-

To fully describe a Boolean function on m + 1
variables, we need to create a transition table and
assign a 0 or a 1 to all possible 2! states. This
gives 2 choices for every of 2 *! places, which
is in total 22" possibilities.

As we stated before, couplings are insensitive
to permutation. For a given cell, let us set up the
variable of self to be 1. Then, we assign 0 or 1
to a state where all couplings are Os, then O or 1
to a state when one coupling is 1 (we emphasize
that it does not matter which of the couplings is
1), two couplings are 1s, and so on until we reach
the state where all the couplings are 1. In total, we
have a choice in 2™ places.

Next, we set up the variable of self to be 0 and
we repeat the same process. We get 2m+1 . gm+1
possibilities. We have then 222 possible func-
tion templates for a network with valency m. W

III. PROBLEM STATEMENT

Dynamical systems arising in biology and ecol-
ogy are often large [16]. Large networks are hard
to analyze mathematically, both from discrete and
from continuous point of view [15]], [17]. Usually
in such cases a model reduction technique is
applied [13l], [17], [18]], [19]. The authors of [1]
base their model reduction strategy intended for
CCNs on cell coloring. They cluster cells with
the same color. This clustered network is called
a quotient network, which is formally defined in
Section In addition to defining the rules for
forming a quotient network, the authors of [1]] go
further. They look at the quotient network and ask
what are the networks that admits this quotient,
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and, if we know the properties of the quotient, what
can be concluded about the original network?

In the next sections we perform a similar
analysis for Boolean CCNs, and we demonstrate
analogous results. We give some insights about
the influence of the network architecture on the
network dynamics.

IV. NETWORK DYNAMICS

A continuous dynamical system is often defined
with one or more parameters [20]. We do not have
this advantage for Boolean dynamical systems
and enforcing the use of parameters is somewhat
artificial. This issue is discussed in details in
[11] and references therein. Bifurcations are tied
to parameters; there are no bifurcations in the
Boolean dynamical systems.

The authors of [1] focused on synchrony-
breaking (pitchfork) bifurcations that are common
in coupled cell networkss and in some cases,
quotient is able to predict their existence in the
original network.

For Boolean CCNs, instead of looking for bifur-
cations, we look for steady states and cycles. We
show that a small Boolean CCN (with 2, 3 and 4
cells) could not have both cycles and steady states
in the same network.

We define a few concepts related to the dynam-
ics of a Boolean CCN.

By canonical steady state we understand a state
of a system when all the cells are working at the
same way. We have 2 such states for a Boolean
network: (0,0,...,0) and (1,1,...,1).

An interesting phenomenon that happens in
Boolean coupled cell networkss is that once syn-
chronized, the network could not un-synchronize,
because all the cells use the same update function.
In all Boolean coupled cell networks we have
either canonical steady states or canonical cycle
(a cycle when the system alternates between two
canonical states).

Canonical Steady States and Canonical Cycles
are called the canonical part of the dynamics.

In addition, Boolean coupled cell networkss
often have non-canonical parts, which are steady
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states and cycles where the system is not synchro-
nized. The appearance of such structures depends
on the functions and on the architecture graph.

V. QUOTIENTS NETWORKS

All the results shown in [1]] regarding quotients
apply directly to Boolean systems, because these
results are based on graph theory and combina-
torics but not on the network dynamics.

Hence, we just re-state the principles of coloring
and taking quotients defined in [[1].

By coloring we understand the function that
assigns a color to every cell (node). Of course one
graph could be colored in many different ways.

By balanced coloring we understand a coloring
for which every cell with color a receives the same
number of inputs from the cells with color b, for
each b. An example of balanced coloring is shown
in Figure []

Fig. 4. An example of balanced coloring in CCN.

A quotient is defined based on coloring. All
cells with the same color become one meta-cell.
The result is shown in Figure [3

T
~_ -

1

2 O

Fig. 5. An quotient network for the network from Figure
formed based on coloring.

Taking a quotient affects the functions asso-
ciated with the cells. This means that all the
variables of the cells clustered to one meta-cell
are replaced by one variable.

In the examples shown in Figure 4| and Figure
[ the original system of three equations
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Ty = f($1,$2,$3),

o2 = f(.fL'Q,xl,l'g),

r3 = f(IS)x17$3)7
changes to

1y = f(xlvaax2)v

Ty = f(w2,71,72),

VI. NETWORKS THAT ADMITTWO-CELL
BIDIRECTIONAL RING AS A QUOTIENT: CASE
STUDY

One of the example cases considered in [[1] is a
network named two cell bidirectional ring (shown
in Figure [6)).

)
\_/

Fig. 6. two cell bidirectional ring

Note. The network presented in Figure [6] should
not be confused with the diagram of mutual activa-
tion/inhibition that often appears in mathematical
biology papers [25]. The function that describes
mutual activation/inhibition is a function that as-
signs the cell the state of its coupling. This is not
an admissible function in the context of CCNs,
since it does not involve cell’s own state variable
in the update formula.

A circuit in a graph is a path consisting of
vertices and edges with the property that we can
reach a vertex from itself. We note that networks
that admit two-cell bidirectional ring as a quotient
have a structure of a bipartite graph with in-degree
1. Such a graph could have only one circuit, and
if it had two, it would be disjoint) Hence the
graph that admits the two-cell bidirectional ring is
a circuit with some attached structure, influenced
by the dynamics of the circuit, but not influencing
back. We will call all the graphs having this
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structure Gooppr. An example of such a structure
is shown in Figure

_
S
W
N

Fig. 7.  An example pf G2cr graph

Claim. The dynamics of the system built on the
Gocpr architecture depends on the dynamics of
its single circuit. In particular, if there is a steady
state in the circuit, there is a steady state in the
system. If there is a cycle of length 2 or more,
there is a cycle in the entire system.

Proof: Let us observe that the structure of
all Goopr graphs is a circuit plus some attached
structure. We will look at the attached part. The
cells belonging to the circuit are influenced only
by other cells that belong to the circuit. If a cell
belongs to the attached structure, it must receive
input from either a cell from the circuit or from
another cell that does not belong to the circuit.
If the attached structure is non-empty, there is at
least one cell in the attached structure that receives
input from the cell from the circuit, because the
graph is connected.

Assume that the circuit achieves a steady state.
Then, all the cells directly influenced by the circuit
achieve steady state as well. The same happens
with the cells influenced by these cells.

Assume that the circuit achieves a cycle of
length greater than 1. This means that the circuit
oscillates between two or more states. The inputs
received by non-circuit cells are either changing
or stay steady. In any case, since the non-circuit
part does not influence the circuit part, the entire
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system could not go to a steady state and there
must be a cycle for the entire system. [ |

Lemma 2. Let G be a graph from the Gapcr
family. Let F(a,b) be a two-variable Boolean
update function template, where a is the variable
of self and b is the variable of a coupling cell.

The network X = {G,F} could either have
a non-canonical cycle(s) or non-canonical steady
state(s), but never both.

Proof: Let us first use the observation from
[1] that the adjacency matrix of such an architec-
ture must have the structure (proved in [L])

cC 0
5 5
where C is the matrix of a circuit and Bs is a
lower triangular matrix with Os on the diagonal.
We can imagine such architecture as a circuit of
length [ with attached non-circuit structure.

We investigate the dynamics of the circuit alone.
Based on the previous claim, the dynamics of the
non-circuit part strictly depends on the dynamics
of the circuit.

Let us assume that there are [ cells in the
circuit. We will write a state of the circuit as
(s1,82,...,8) assuming that s; sends input to ss,
59 to s3 and so forth and s; sends input to s;.

Let us assume that we have a non-canonical
steady state in this structure. This means that
this steady state of the form (...,0,1,0,...) or
(...,1,0,1,...)

In both cases we have F(1,0) =
F(0,1)=0.

Note that we cannot have both F'(0,0) = 1
and F'(1,1) = 0, since this leads to a function
F(a,b) = b+ 1 (which is not admissible). We
could not have F(1,1) = 1 and F(0,0) = 0
because this leads to F'(a,b) = a, which is not
admissible as well.

We have two cases:

e Case 1: F(0,0) = 0 and F(1,1) = 0. We
notice that a system driven by such a function
could not oscillate. Once changed to 0, a cell
could not go back to 1.

1 and

Biomath 6 (2017), 1703227, http://dx.doi.org/10.11145/j.biomath.2017.03.227

e Case 2: F(0,0) = 1 and F(1,1) = 1. We
notice that here oscillations are impossible as
well. Once a state of a variable is changed to
1, it could not go back to 0.

We conclude that if Boolean CCN from the
Gopcr family has a non-canonical steady state,
it cannot have a non-canonical cycle.

To prove the converse, let us assume that there
is a non-canonical cycle in {G, F'}.

As a part of this cycle we must have a transition
between two states of the system as shown below

(or 0 ) = (s L),
or | |
(s 1) = (s 0,0,

T T

Thus, for the first case we must have F(0,0)
lor F(0,1) = 1 and for the second case F'(1,0)
0or F(1,1) =0.
e Case 1, F(0,0) = 1. There are 4 possible
options (note that either F'(1,0) = 1 or

F(1,1) = 1 because x5 must eventually
return to the original state.
D
F(0,1) =0
F(1,0) =0
F(1,1) =
In this case F'(a,b) = a+b+ 1. If there
exists a non-canonical steady state, we
must have for some xj and xg
(..,,0, 1 ..0)—=(.., 0, 1 ..
~— =~ ~— =~
Tk Th41 Tk Tk41
This is, however, impossible because
F(1,0)=0.
2)
F(0,1) =0
F(1,0) =1
F(1,1) =0

In this case we have F(a,b) = 1+
and this is not a valid update function
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(it does depend only on the coupling
variable).
3)

By the same reasoning as in 1) we ob-
tain that this function could not produce
a non-canonical steady state.

4)
F(0,1) =1
F(1,0) =
F(1,1) =0

By the same reasoning as in 1) and in
3), we obtain that this function could not
produce a non-canonical steady state.
e Case 1, F(0,1) =1
Based on similar reasoning as in the previous
case, points 1), 3) and 4), the template func-
tion with such a property could not produce
a non-canonical steady state.

The proof for Case 2 is analogous. Thus, we
obtain that if there is a non-canonical cycle in
{G, X}, then there cannot be a non-canonical
steady state.

We conclude that non-canonical steady states
and non-canonical cycles do not appear together in
a Boolean CCN that admits two-cell bidirectional
ring as a quotient.

Next, we use the observation that the dynamics
of the non-circuit part of the system depends on
the circuit. Hence, if there is no oscillation in
the circuit, there are no oscillations in the entire
system. ]

Theorem 3. The following are true:

1) If the 2CBR has non-canonical steady states,
so does the non-quotient network, from
which it arose.

2) If the 2CBR has non-canonical cycles, so
does the non-quotient network, from which
it arose .
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Proof:

There are only 22'+2 = 16 Boolean coupled
cell networks that could be created on a 2CBR
architecture. Eight of them yield only canonical
dynamics and eight do not. We need to exclude
all the networks where we do not have both the
influence of self-variable and of the coupling.
Eventually we are left with four networks.

These are the systems that have non-canonical
cycles:

fi =vixra+a1+1,
fo =moxxy+mo+1,

and

fi =z 22+ 20,

fa =xexx+ 1.

These are the systems that have non-canonical
steady states.

fi =xi*xxa+ o+ 1,
fo =zexa+x1+1,

and

fi =z1x12+ 70,

fo = xzoxx1+ 20,

Again, we can use the structure that admits
2CBR as a quotient. We know that this structure
consists of a circuit and some circuit-dependent
cells that do not form a circuit themselves.

Similarly as in the proof of Lemma 2, we can
just consider the dynamics of the circuit.

We analyze the above-mentioned four systems
separately.

The first system gives F'(0,0) =1, F(1,1) =1,
F(0,1) =1 and F(1,0) = 0. We can assume that
the cells influence each other in an order (the first
cell influences the second, the second influences
the third and so on, the nth cell influences the
first cell) and consider any starting state, say
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(1,0,0,...,0). From the dynamics we have a
sequence of states

(1,0,0,...,0)
(0?1717""]‘)7
(1,0,1,...,1),
(1,1,0,...,1),
(0,1,1,...,1),

which is clearly a cycle of length 2 or more.
Since the rest of the dynamics is influenced by
the dynamics of the cells belonging to the circuit
and we have “pulses” of Os and 1s, we can only
end up having a cycle for the entire structure.

By Lemma 2, cycles and steady states do not
appear simultaneously and we have a system with
additional cycles.

The second case leads to '(0,0) =0, F/(1,1) =

0, F(0,1) = 1, F(1,0) = 0. If we start with
(1,0,...,0), we obtain

(1,0,0,...,0),

(0,1,0,...,0),

(0,0,1,...,0),

(0,0,0,...,1),

(1,0,0,...,0),

which is a cycle of length 2 or more. By the same
line of reasoning as for the first case, we get a
system with additional cycles.

The third case gives F'(0,0) = 1, F(1,1) =
1, F(0,1) = 0 and F(1,0) = 1. Let us use the
same argument as for the first case and consider
the circuit separately, and assume that it is ordered.
Let us take a starting state, say (1,0,...,0). Based
on F, we obtain a sequence of system states

(1,0,0,....,0),
(170’17""1)7
(1,0,1,...,1),
(1,0,1,...,1),

Biomath 6 (2017), 1703227, http://dx.doi.org/10.11145/j.biomath.2017.03.227

and (1,0,1,...
steady state.

Because of the lack of the circuit in the rest
of the system architecture, we must have a steady
state for the entire system. By the lemma, we must
have a system with additional steady states.

The fourth case gives us F'(0,0) =0, F'(1,1) =
0, F(0,1) = 0 and F(1,0) = 1. We start with

,1) is clearly a non-canonical

(1,0,...,0). We obtain a sequence of system
states

(170707"'70)7

(1,0,0,...,0),

(1,0,0,...,0),
and (1,0,0,...,0) is clearly a non-canonical

steady state. By similar reasoning as in previous
cases and Lemma 2 we obtain that this system
must have non-canonical steady states.

]

VII. BIOLOGICAL EXAMPLE

Most known Boolean models in systems biology
are characterized by cooperating species, each of
which is governed by a different set of rules
[18], [26]. Models based on the idea of identical
entities governed by identical sets of rules are quite
common in ecology, however these models are
usually not Boolean [27].

To illustrate a Boolean network that admits two-
cell bidirectional ring as a quotient, we use a
simple fish schooling model. A reaction of a fish
school to a predator is a well-documented behavior
[29]. There exist a couple of theories explaining
this phenomenon. One of the theories is a many
eyes hypothesis [28]]. According to this theory, the
advantage of swimming in a schools is that the
fish can rely on collective vigilance while avoiding
predators, and thus spend more time foraging.
Once a single fish senses a predator, it sends a sig-
nal to neighboring fish [30] (for example, changes
the direction, and the neighboring fish are able
to sense this change rapidly). These neighboring
fish send signal further, until the entire school is
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alert and invokes its defense mechanisms (for ex-
ample, collectively changes direction). Previously,
fish schools have been modeled by both, an ODE
model [31], and discrete agent-based model [27].

In very simplistic terms, a fish in a school has
two possible states: alert and non-alert. An alert
fish spreads the alert signal to other fish, causing
them to change their state to alert. We can assume
that a fish might send a signal to multiple fish, but
receives a signal only from one other fish (say,
closest lateral neighbor). In order for a school to
ensure an efficient spread of information, we must
have a cycle inside the fish network.

We assume that an alert fish stays alert re-
gardless of the state of its coupling fish. In a
school we also have fish who stay “inside” the
school and base their safety on the vigilance of
the more specialized fish. We note that there might
exist some fishes, who are undervigilant and do
not inform the surroundings, but are still able to
receive the alert information.

Hence, in our network the nodes are fish, state 1
means that the fish is alert and state 0 means that it
is not. A fish has only one coupling, but might be a
coupling to many other fish. A simple illustration
of such behavior is shown on the Figure

G G @
A
@\
L
Fig. 8. Simple fish school model.

We note that in such a Boolean network, any
state where any of the fish-nodes on the circuit
is alert leads to a state where all the fishes are
alert. Also a state where none of the fish is alert,
is a steady state. We note that such dynamics
is governed by a function F(0,1) = 1 (non-alert
fish changes a state to alert once a coupling is
alert), F'(1,0) = 1, and F(1,1) = 1 (alert fish
stays alert regardless if its coupling is alert or not)
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Timestep|1 2 3 4 5 6 7 8 9 10
1 01000 0 0O0OO O
2 01100 0O0O0O0O O
3 011101 000 O
4 011111000 O
5 1 111 1 1 1 1 0 O
6 1 11 1 1 1 1 1 1 1

Fig. 9. Dynamics of fish school model with initial condition:
fish 2 senses predator (time step 1).

and F'(0,0) = 0 (non-alert fish stays non-alert
when the coupling is non-alert). In such a network
there are canonical steady states (0,0,...,0) and
(1,1,...,1), many possible non-canonical steady
states, and no cycles. For example, in the network
shown in Figure [§] all the states listed in the table
below are the non-canonical steady states, and this
is not a complete list

(0,0,0,0,0,1,0,0,0,0)
(0,0,0,0,0,0,1,0,0,0)
(0,0,0,0,0,0,0,1,0,0)
(0,0,0,0,0,0,0,0,0,1)
(0,0,0,0,0,1,1,0,0,0)
(0,0,0,0,0,1,0,1,0,0)
(0,0,0,0,0,1,0,0,0,1)
(0,0,0,0,0,0,1,1,0,0)
(0,0,0,0,0,0,1,0,0,1)
(0,0,0,0,0,1,0,1,0,1)
(0,0,0,0,0,1,0,0,1,1)

Fig. 10. Example of non-canonical steady states of the
Boolean CCN shown in Figure [§]

The network presented above reduces to a 2CBR
with 2 steady states (0,0) and (1,1) and dynamics
(0,1) = (1,1), (0,1) = (1,1), (0,0) — (0,0),
(1,1) — (1,1). The function that governs this
system is F'(z1,22) = (1 4+ 1) * (22+ 1)+ 1 =
ﬂ(ﬂxl VAN —\x2).

This shows that regardless of the size of the
school, one can interpret its behavior in the same
way: if one fish on the circuit is alert (i.e. fish
who is specialized in vigilance), all fish become
alert, and if none of the fish on the circuit is alert,
the school stays non-alert. We note that if the fish
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that is not on the circuit becomes alert, it does
not have an ability to inform the other fish. This
can be thought of as either the fish is currently
foraging, and the other, more specialized fish in
the school would notice the predator anyways, or
the fish is too far away from the school, or the fish
just received false signal. The quotient network is
an simplification of this system where only the
dynamics of the cycle is taken into account.

P

f
&=

<
AN

Fig. 11. Quotient of simple fish school model.

The model presented above is very simple,
however, it illustrates the idea well. A behavior
where one member of the species informs other
members about the danger does occur in plants as
well; for example tomato plants are able to spread
such information [32].

VIII. NETWORKS THAT ADMIT THREE-CELL
BIDIRECTIONAL RING AS A QUOTIENT: CASE
STUDY

According to [1]], there are two networks with
4 cells that admit three-cell bidirectional ring as a
quotient and 12 networks with 5 cells that admit
three-cell bidirectional ring as a quotient. The
authors of [[1] have shown that the dynamics of
a three-cell bidirectional ring is a good predictor
of the dynamics of a bigger network for both
networks with 4 cells and for the 10 out of 12
networks with 5 cells.

The three-cell bidirectional ring is a structure
shown in Figure [12]

O
] —— 2
\ .
three-cell bidirectional ring

Fig. 12.

The two networks with four cells admitting
three-cell bidirectional ring as a quotient are
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shown in Figure [I3] All twelve five-cell networks

@4 ] \@ |

o 6@
Fig. 13. Four-cell networks that admit three-cell bidirectional
ring as a quotient, taken from [1]

admitting three-cell bidirectional ring as a quotient
are shown in Figure [I4 The analysis of the net-

Fig. 14. Five-cell networks that admit three-cell bidirectional
ring as a quotient, taken from [1]]

works that admit a particular network as a quotient
was based on the topology, not on the dynamics,
hence we can use the results from [1]].

There are 64 Boolean networks of valency 2
(regular network with two couplings). If we apply
those networks to the three-cell bidirectional ring,
it turns out that 32 of these networks have only
canonical structure, and only 4 have additional cy-
cles and the rest have additional steady states. One
of the 4 networks is not admissible since the func-
tion template can be written as F'(a,b,c) = 1+a,
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hence only 3 remain. Similarly to the 2CBR case,
we cannot have non-canonical steady states and
non-canonical cycles in the same network using
the three-cell bidirectional ring as an architecture
graph.

Theorem 4. If a Boolean coupled cell networks
of valency 2 that admits three-cell bidirectional
ring as a quotient is built using any of the three
function templates that result in additional cycles
for the three-cell bidirectional ring, it could not
have non-canonical steady states.

Proof:
o Network 1: For this network we have
F(1,1,1) =0,
F(1,1,0) =0,
F(1,0,1) =0,
F(1,0,0) =0,
F(0,1,1) =1,
F(0,0,1) =1,
F(0,1,1) =1,
F(0,0,0) =0,

We notice that for this network once the cell
changes its state to 1, after update it changes
to O regardless of what is the state of the
coupling. Hence the only possible steady state
is a canonical state with all Os.

o Network 2:
F(1,1,1) =1,
F(1,1,0) =0,
F(1,0,1) =0,
F(1,0,0) =0,
F(0,1,1) =1,
F(0,0,1) =1,
F(0,1,1) =1,
F(0,0,0) =1,

We use the same line of reasoning and notice
that once the cell has a state 0, it must change
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the state to 1 regardless what is the state of

couplings. The only steady state is such as a

system could be a canonical state with all 1s.
o Network 3:

Here the situation is not as clear as for the
two previous functions.

Assume that we have a non-canonical steady
state in this network. Since it is non-
canonical, it must have some number of Os
and 1s. If it is (1,0,0,...,0), the first 1
is influenced by 2 Os and we end up in a
canonical steady state. The same happens for
a state with 2 ones. If we take a state with
(1,1,1,0,0,...,0) and assume that first 3
cells influence each other and all the cells
with Os influence each other we conclude that
it is a steady state, but in such a case the
network is disjoint. We use the same way of
reasoning for all the states with 4 or more 1s.
We conclude that a network with such an
update scheme could not have non-canonical
steady states.

]
The characterization of the networks with non-
canonical steady states is much harder. Depend-
ing on the architecture, the networks that admit
three-cell bidirectional ring may have or may not
have both non-canonical steady states and non-
canonical cycles.
Claim The following is true for the networks
that admit three-cell bidirectional ring as a quo-
tient.
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e The dynamics of s three-cell bidirectional
ring is a good predictor of a dynamics of the
network with 4 cells that has admitted it. If
a three-cell bidirectional ring has only non-
canonical cycles, so does the bigger network.
If a three-cell bidirectional ring has only
additional steady states, so does the bigger
network.

o For the 4 out of 12 5-cell networks that admit
a three-cell bidirectional ring as a quotient the
dynamics of a three-cell bidirectional ring is
a good predictor of the dynamics of a bigger
network. For the rest of the networks, non-
canonical cycles may appear, even though
the smaller network has only non-canonical
steady states.

A contribution towards the proof. As men-
tioned earlier, there exist 64 function templates
for Boolean CCN created based on a three-cell
bidirectional ring architecture. 32 of them have
non-canonical dynamics. 28 functions out of the
32 have non-canonical steady states. We used a
CPP code to test two 4-cell networks and twelve
5-cell networks using each of the 28 functions.

e If a 3CBR quotient has a non-canonical
steady state, so does the 4-cell network that
has admitted it. If 3CBR has a non-canonical
cycle, so does the 4-cell network that admit-
ted it. This result was obtained using exhaus-
tive computer simulation.

e For 4 graphs (8, 9, 11, and 12), if the quotient
network has only non-canonical steady states,
so does the networks that admitted it. This re-
sult was obtained using exhaustive computer
simulation.

o If the quotient network has only cycles, so
does the network that admitted it. This is true
for all 12 of the 5-cell networks. This result
was obtained using exhaustive computer sim-
ulation.

Figure [T3] shows how many (out of 28) functions
cause the non-qoutient graph to have both non-
canonical cycles and non-canonical steady states.
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Number of functions
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Network

Fig. 15. Number of function templates that have have both
non-canonical steady states and non-canonical cycles in a 5-
cell non-quotient network.

IX. RELATIONSHIP WITH AGENT-BASED
MODELS

Every coupled cell networks can be viewed as
an agent-based model. The agent-based model is
a model consisting of identical interacting agents.
The framework of agent-based models is very
general; any object could be considered an agent
(network cells, fishes, people susceptible to infec-
tion, bugs, trees etc). Every agent is described by
the state vector (for example, position, infection,
age, alertness) and the state vector is updated
according to the same rules.

The model presented in Section [VII] can be
viewed as agent-based model. In this model the
fish function as agents. These fish are character-
ized by a state vector with only one variable:
state of alertness (alert or non-alert). In this simple
model fish are stationary, which means they do not
move throughout the domain. The update rules for
the state of a single agent are the same as described
in Section [VIII

Typically, agent-based models are large. There
are not many mathematical methods that allow
us to control (predict and change) their behavior
[21], [22]]. A method that allows a researcher to
look at the quotient of the model and predict the
behavior of the bigger original model would be a
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desirable tool. There exist a framework that makes
it possible to translate an agent-based model into a
system of Boolean equations [3]], and thus, at least
in some cases, it can be translated to a Boolean
CCN.

CONCLUSIONS AND FUTURE WORK

In this paper we show preliminary work regard-
ing Boolean coupled cell networks. We are able
to fully characterize the dynamics of the networks
that admit two-cell bidirectional ring as a quotient,
and we provide a small contribution to character-
izing networks that admit three-cell bidirectional
ring as a quotient. The main contribution in this
paper is showing that CCNs have their Boolean
counterpart and that this new setting brings a
new perspective on Boolean functions and Boolean
networks.

The phenomenon of bifurcations does not arise
in Boolean CNNs, yet it does not make investi-
gating their dynamics easy. In fact, predicting dy-
namics based on the quotient turns out to be a hard
problem for the Boolean CCNs. In the future we
plan to investigate bigger networks (with more that
5 cells) that bring 3CBR as a quotient, possibly
using high performance computing. An efficient
algorithm for easy enumeration and generation of
such networks is needed as well.

In this paper we do not analyze the dependence
between internal symmetries of the network graph
and properties of its dynamics. Such analysis is an
important part of CNN research [2]] and we plan to
develop similar techniques and ideas for Boolean
CCN:s.

Finding a more powerful, biology-related ap-
plication of Boolean quotient networks is another
goal. This would allow us to confirm the impor-
tance of the results derived in this paper on a new
level.

In this paper we focus on regular Boolean CCNs
with one type of coupling. Expanding the research
to networks with less regularity and two or more
types of coupling is another future goal.
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