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Abstract—Effective methods of fluid transport
vary across scale. A commonly used dimensionless
number for quantifying the effective scale of fluid
transport is the frequency based Reynolds number,
Rey, which gives the ratio of inertial to viscous
forces in a fluid flow. What may work well for one
Rey regime may not produce significant flows for
another. These differences in scale have implications
for many organisms, ranging from the mechanics
of how organisms move through their fluid environ-
ment to how hearts pump at various stages in devel-
opment. Some organisms, such as soft pulsing corals,
actively contract their tentacles to generate mixing
currents that enhance photosynthesis. Their unique
morphology and the intermediate Re; regime at
which they function, where both viscous and inertial
forces are significant, make them a unique model
organism for understanding fluid mixing. In this
paper, 3D fluid-structure interaction simulations of a
pulsing soft coral are used to quantify fluid transport
and describe fluid mixing across a wide range of
Rey. The results show that net transport is negligible

for Rey < O(10'), and continuous upward flow is
produced for Re; > O(10'). Sustained net transport
is necessary to bring in new fluid for sampling and
to remove waste. As the Re is increased well above
O(10'), the slow region of mixing necessary for gas
exchange between the tentacles is reduced. Since
corals live at Re; between about 8 and 36, the flows
they produce are defined by sustained net transport
of fluid away from the coral in a continuous upward
jet and a slow region of mixing between the tentacles
necessary for gas exchange.

Keywords-pulsing coral; coral reefs; immersed
boundary; fluid-structure interaction; computa-
tional fluid dynamics;

I. INTRODUCTION

Biological fluid transport is not only dependent
upon the method of movement, but also the fluid’s
physical properties and the size and velocity of
the organ or organism. While one mechanism
for transport may work well at the macroscale,
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that same mechanism may not work well at the
mesoscale or microscale. For example, reciprocal
motion of a fish’s caudal fin may not produce
adequate forward propulsion if the fish is put into
a considerably more viscous fluid than water. If
the viscosity is high enough, the fish might not
swim at all as no reciprocal fin stroke will yield
any net transport of fluid. The fact that reciprocal
motions do not generate net movement at small
scales is famously known as the Scallop Theorem
[1]. The Reynolds number, Re #»1s a dimensionless
quantity that describes the ratio of inertial to
viscous forces in a fluid and is used to compare
fluid transport across scales. For a fluid of density
p, dynamic viscosity u, and some characteristic
length and frequency scale L and f, respectively,
a frequency-based Rey may be defined as
2

Rey = M (1)

I
For a Newtonian fluid in a large domain and with
a sufficiently low Rey, it is necessary to use non-
reciprocal motions to produce the net transport of
fluid. One common example of a non-reciprocal
motion is the use of a rotating flagellum like in
many bacteria and sperm cells [2], [3]. Beyond
locomotion, there are many other applications of
fluid transport within biological systems such as
the generation of feeding currents [4]], the genera-
tion of flow for oxygen and nutrient transport [3],
the internal pumping of fluids (e.g. the cardiovas-
cular system) [6], flows generated for filtering [7],
and flows for photosynthetic enhancement [8]. As
is the case for locomotion, different pumping and
feeding mechanisms may only be effective over

some range of Rey [9], [10].
In this paper, we quantify the flows produced by
a variety of soft corals, including the genera Xenia
and Heteroxenia, that actively pulse and contribute
substantially to local ocean mixing, enhancing nu-
trient availability in reefs. Each individual polyp is
made up of eight feather-like tentacles (see Figure
[I) positioned at the end of an approximately 5 cm
long stalk [L1]]. These soft corals form colonies
up to 60 cm across [11], and polyps within a
colony do not normally pulse in synchrony but
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Fig. 1: Xeniid coral colonies at the Underwater
Observatory, Eilat, Israel.

out of phase [12]]. The pulsing motion is generated
by active contraction of the muscles in the tenta-
cles, and the expansion of the tentacles is due to
passive elastic recoil. Although this behaviour is
reminiscent of feeding and prey capture behaviours
in other phyla like molluscs or bryozoans, past
research has shown that the pulsing is linked to
the removal of oxygen from the tissues [12]. This
is achieved through increased mixing around the
polyps and by allowing oxygen-rich water to be
advected away faster than when the corals are
not pulsing. Accelerating the removal of oxygen
allows for the coral’s symbionts to increase their
photosynthetic rates, thus increasing the organ-
ism’s metabolic rate.

On average, the polyp pulsing frequency is
about 0.5-1 Hz, and the frequency-based Reynolds
number of an individual polyp ranges from about
8 to 36 (see Section [l). These corals operate at
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an Rey that is much lower than most other puls-
ing cnidarians, including jellyfish. In particular,
the pulsing soft corals operate in a much lower
Rey regime than the only other benthic cnidarian
known to actively pulse to generate exchange
currents, the upside-down jellyfish Cassiopea spp.
Upside-down jellyfish host zooxanthellae in their
tissues and, like corals, also benefit from their
photosynthetic symbionts [[13]], [14]. Unlike soft
corals that generate exchange currents with their
tentacles, upside-down jellyfish create flow by
actively contracting and relaxing their gelatinous
bell. The biologically relevant Re; for upside-
down jellyfish pulsing in the benthic layer ranges
from about 100 to approximately 450 (adult) [[15].
As such they operate completely within the inertial
range (Rey >> 1) where reciprocal motions are
effective. Several experimental and computational
investigations have described the fluid dynamics
of upside-down jellyfish [4], [16]], [17].

In this paper, we quantify the fluid dynamics of
one pulsing polyp over a range of Re, both above
and below the biologically relevant range. This
fully coupled fluid-structure interaction problem is
solved using the 3D immersed boundary method.
We find that within the biologically relevant range,
individual polyps generate a continuous upward
jet using a reciprocal motion of the tentacles.
This drives new fluid between the tentacles during
each pulse and minimizes resampling of the same
fluid volume. A slow mixing region is produced
during tentacle expansion that is separated from
the upward jet, which would provide sufficient
time for the uptake of nutrients from the fluid
and removal of waste from the tissues. Upon the
next contraction, this volume of fluid is expelled
and a new volume of fluid is driven between
the tentacles upon the subsequent expansion. The
continuous upward jet, formation of a slow mixing
region during expansion, and continual flow of
new fluid toward the polyp in the radial direction
are not evident at [Re < 5 when the flow becomes
nearly reversible. For Re > 40, the magnitude of
flow between the tentacles and the average vertical
velocity of the upward jet is reduced.
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II. METHODS
A. Coral Motion and Geometry

In this study, we use the frequency-based
Reynolds number, Rey, to describe the flows pro-
duced by the coral. The characteristic length, L,
is set to the tentacle length and the characteristic
frequency, fcoral, 1S set to the pulsation frequency.
The fluid density and dynamic viscosity are set to
that of sea water (see Table [I).

To determine the biologically relevant range of
Rey, videos were taken of three coral colonies
in the Red Sea off the coast of Eilat, Israel, and
of three colonies of cultured corals in the lab. In
each video, five individual polyps were tracked
to determine the pulse period averaged over 20
cycles. Measurements were also taken from one
tentacle on each polyp to determine the length of
the tentacle. The pulsing frequency is given as
a function of tentacle length in Figure [2] There
was no significant correlation between pulsing
frequency and size of the coral. The average Rey
was 19.64 £+ 7.28 with a minimum of 8.74 and a
maximum of 36.0. The average tentacle length was
(6.13 + 0.10) x 1073 m and the average pulsing
frequency was 0.53 + 0.043 Hz. For the numerical
simulations performed here, we set the frequency
and tentacle length to that of a typical coral where
feorat = 1/1.9 s7! and Ly = 0.0045 m. The
dynamic viscosity was varied in the simulations
to study a range of Rey, above and below that
typical of soft corals. The range of Rey studied
here is 0.5, 1, 5, 10, 20, 40, and 80.

The pulsing motion of the coral was based
on kinematics of five live polyps and is detailed
elsewhere [18]. To summarize, the motion of
the tentacles was quantified by tracking positions
along a single tentacle for five pulses. Each polyp
was filmed using a single Photron SA3 120K
camera at either 125 or 60 frames per second in a
quiescent fluid, focusing on the motion of a single
tentacle that moved within the plane of focus. In
each frame six approximately equispaced points
were tracked along the tentacle using DLTdv5
[19]]. These positions were then fit with third order
polynomials. An averaged motion was constructed
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Fig. 2: Pulsing frequency vs. tentacle length for 15
corals in the field (Red Sea, FEilat, Israel) and 15
cultured corals in the lab. There is not a significant
relationship between pulsing frequency and size.

Parameter Variable Units Value
Domain Size D m 0.06
Spatial
Grid Size dx m D/1024
Lagrangian
Grid Size ds m D /2048
Time Step Size dt s 1.22x10°*%
Total
Simulation Time r pulses 10
Fluid Density P) kg/m? 1000
Fluid Dynamic .
Viscosity I kg/(ms) varied
Tentacle Length Lt m 0.0045
Pulsing Period P s 1.9
Target Point 5 _9
Stiffness ktarget | kg-m/s” | 9.0x10

TABLE I: Numerical parameters used in the three-
dimensional simulations.

by averaging the motion over the five pulses and
across five polyps. The averaged motion of the ten-
tacle was used to describe the preferred position of
the immersed boundary by tethering the immersed
boundary describing the tentacles to time varying
target points.

The overall numerical model of the coral con-
sisted of eight tentacles, a base, and no stem. This
numerical polyp was placed in the bottom center
of the computational domain (see Figure [)). Note
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that the presence of the stem does not significantly
alter the flow and was neglected. The base of the
tentacles was positioned 0.005 m above the bottom
of the domain, approximating the length of the
stem of the single polyp. The distance from the
center of the polyp to the tip of its tentacles at
full expansion was approximately 0.0045 m. The
distance from the base of the polyp to the tip of
the tentacles at full contraction was 0.0037 m. The
length of the tentacle was determined by averaging
the length measured in each frame for each polyp
and then averaging over all five polyps.

The shape of each tentacle was approximated
as an isosceles trapezoid with a basal width of
0.00108 m, the average width across all mea-
sured polyp tentacles. This average was found
by measuring the width of the tentacle base in
one frame from each video when a tentacle was
parallel to the plane of focus. This distance was
then used to construct the numerical tentacle. The
width of the top of the tentacle was set to be
one fifth of the basal width to circumvent any
possible tentacle overlap when the simulated polyp
is fully contracted. The average diameter of the
polyp’s base was measured by finding the distance
between the bottom of two oppositely arranged
tentacles in each frame and then averaging across
all frames and all videos. This resulted in an
average base diameter of 0.00106 m.

A pulsing cycle was divided into three phases
as described below (see also Figure [3)).

1. The coral begins with all its tentacles in
an open, relaxed state. The tentacles then
actively contract and the polyp closes. This
takes about 28% of the pulse cycle.

2. From the contracted state, the tentacles relax
back to their original expanded, resting state.
The expansion phase takes about 43% of the
pulse cycle.

3. The tentacles remain open and at rest for
about 29% of the pulse cycle.

This process then repeats itself.

B. Numerical Method

The immersed boundary method (IB) [20] was
used to solve the fully coupled fluid-structure
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O

Fig. 3: A single polyp’s pulsation cycle. The
coral moves from its relaxed state to an actively
contracted state and then relaxes back to its orig-
inal, open, resting state. The two tentacle colors
were chosen to differentiate the tentacles in the
foreground and background.

interaction problem of a pulsing soft coral in an
incompressible, viscous fluid. The IB method has
been successfully applied to a variety of problems
in biological fluid dynamics with an intermediate
Rejy regime, ie. 0.01 < Rey < 1000, including
heart development [21], [22]], insect flight [23],
swimming [24], [25]], and dating and relationships
[26]. A fully parallelized implementation of the IB
method with adaptive mesh refinement, IBAMR
[27], was used for the simulations described here.
More details on the IB method and IBAMR are
found in the Appendix

All parameter values used in the computational
model are given in Table [ A depiction of the
computational domain is given in Figure 4l Note
that periodic boundaries are used in the x and z
directions, and no-slip conditions are used in the
y-direction, corresponding to a solid boundary on
the top and bottom of the domain (u = 0 at y =
—0.15 and y = 0.45). The initial conditions of the
fluid are set to zero and there is no ambient flow
considered. For a study including ambient flow see
[28].

C. Lagrangian Coherent Structures

We computed the finite-time Lyapunov expo-
nent (FTLE) to determine Lagrangian coherent
structures (LCSs) [29]], [30] using Visit 2.12.3
[31]. Within flow fields, LCSs can reveal particle
transport patterns that are of potential biological
importance, such as in particle capture, predator-
prey interactions [32], [33]], and locomotion [34].

Biomath 6 (2017), 1712169, http://dx.doi.org/10.11145/j.biomath.2017.12.169

0.45

03

Fig. 4: The computational domain for a single
coral polyp. Note that the boundaries in the x- and
z-directions are periodic. The boundary conditions
in the y-direction are no slip (u =0 at y = —0.15
and y = 0.45) .

In essence, LCSs provide a method to untangle
the overall dynamics of the system in a simplified
framework. Trajectories were computed using an
instantaneous snapshot of the 3D vector field, and
the FTLEs were computed on a regular 1283 grid
using a forward Dormand-Prince (Runge-Kutta)
integrator with a relative tolerance of 0.001, an
absolute tolerance of 0.0001, a maximum advec-
tion time of 0.1s, and a maximum number of steps
of 1000.

III. RESULTS

Figures show snapshots of the velocity
and vorticity generated during the fourth pulsation
cycle for three different numerical simulations
corresponding to Rey = 0.5, 10, and 80. The
velocity vectors point in the direction of flow, the
length of the vectors correspond to the magnitude
of the flow, and the colormap corresponds to the
value of the vorticity taken in the z-direction (out
of plane). Both vorticity and fluid velocity were
taken on a 2D plane passing through the central
axis of the polyp. The tentacles are shown in pink
in 3D. The snapshots taken correspond to 5%,
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Fig. 5: The z-component of vorticity and the
velocity vector field taken on a 2D plane through
the central axis of the coral at Rey = 0.5. This
Rey corresponds to a smaller scale than would be
observed in nature. The colormap shows the value
of w,, the arrows point in the direction of flow,
and the length of the vectors correspond to the
magnitude of the flow. Shapshots are taken during
the fourth pulse at times that are 5%, 15%, 25%,
35%, 45%, 55%, 65%, and 75% through the cycle.

Fig. 6: The z-component of vorticity and the
velocity vector field taken on a 2D plane through
the central axis of the coral at Rey = 10. This Rey
corresponds to a typical coral polyp.The colormap
shows the value of w,, the arrows point in the
direction of flow, and the length of the vectors
correspond to the magnitude of the flow. Snapshots
are taken during the fourth pulse at times that are
5%, 15%, 25%, 35%, 45%, 55%, 65%, and 75%
through the cycle.
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Fig. 7: The z-component of vorticity and the
velocity vector field taken on a 2D plane through
the central axis of the coral at Rey = 80. This
Rey corresponds to a very large, fast pulsing coral
polyp. The colormap shows the value of w,, the
arrows point in the direction of flow, and the length
of the vectors correspond to the magnitude of the
flow. Snapshots are taken during the fourth pulse
at times that are 5%, 15%, 25%, 35%, 45%, 55%,
65%, and 75% through the cycle.

15%, 25%, 35%, 45%, 55%, 65%, and 75% of the
pulsing cycle such that the first three frames show
the contraction phase, the next four frames show
the expansion phase, and the last frame shows the
polyp at rest.

During contraction, regardless of Rey, there
is a clear upwards jet. In addition, vorticity is
generated at the tips of the tentacles. At the
beginning of expansion (! = 0.351"), oppositely
spinning vortices are formed at the tips of each
tentacle. At higher Rey, particularly Re; = 80,
the vortices formed during contraction separate
from the tentacle tips and are advected upwards.
The motion of these vortices helps to maintain a
strong upward jet above the polyp. At the lower
Rey, (e.g. Rey = 0.5), these vortices quickly
dissipate. The direction of flow above the coral
also reversed such that fluid is pulled downward
between the tentacles. For Rey < 1, the flow is
nearly reversible, that is, any fluid pushed away
from the polyp during contraction is pulled back
during expansion. At intermediate Rey (e.g. Rey
= 10), an upward jet is observed above the polyp
during expansion, and fluid below this jet mixes
between the tentacles.

During the resting phase (last frame), the fluid
comes to rest in the lower Rey cases. Although the
strength of the upwards jet in the Re; = 80 case
is greatest, the magnitude of the flow between the
tentacles produced by vortices generated during
expansion are greater in the Rey = 0.5 and 10
cases. We find strong mixing between the ten-
tacles for Rey < 30; this mixing decreases for
Rey > 30. This indicates that, near the biologi-
cally relevant Rey, the morphology and motion of
the tentacles allow for greater mixing close to the
polyp itself.

To compare the relative strength of the upward
jets generated by coral polyps across scales, we
averaged the y-component of the velocity (in the
vertical direction) within a box that was drawn
from the tips of the tentacles during full con-
traction to one tentacle length above that point
(—=0.0063m < Y < —0.0018m). The width of
the box was set equal to the diameter of the fully
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Fig. 9: The spatially averaged dimensionless hor-
izontal flow towards the polyp (u,) over time
during five pulse cycles. Rey = 0.5, 1, 5, 10, 20,
40, and 80 are shown. Velocity is given as tentacle
lengths per pulse.

expanded polyp (—0.0045m < X, Z < 0.0045m).
The average vertical velocity versus time for five
pulses is shown in Figure |§| for Rey = 0.5, 1,
5, 10, 20, 40, and 80. Note that the velocities
are nondimensionalized by the tentacle length and
pulse duration such that U’ = U/ %z = U/ 29945,

Each Rey investigated showed a peak average

velocity in the upward jet that corresponds to the
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end of the contraction phase. Moreover, the largest
maximal peak in average velocity corresponds to
the lowest Rey = 0.5 case, while the lowest peak
corresponds to the highest case, Rey = 80. This
is partially due to the fact that we average over
a relatively large box. Additionally, the region
of motion is larger at lower Rey due to the
relatively large boundary layers (recall that Rej
is lowered by increasing only dynamic viscosity).
Immediately following contraction, as the polyp
begins to expand, the average velocity drops for
each Rey. In the cases for Rey < 5 there is
significant backflow, where the average velocity
becomes negative, reaches a minimum, and then
slowly approaches zero. Around Rey > 10 the
average vertical flow decreases during tentacle
expansion; however, the net average flow remains
upwards. This is significant as the continuous
upward jet allows new fluid to be brought to the
polyp throughout the pulsing cycle.

While the transition to continuous upward flow
occurs at Rey = 10, for 10 < Rey < 30, we
have also seen that the tentacle morphology allows
for greater mixing near the polyp itself. This
suggests that the polyp may be able to enhance its
nutrient uptake or waste removal. Note that since
the Rey = 80 case has a continuous upward jet
but little mixing near the polyp, wastes as well
as nutrients would continuously be expelled away
from the polyp, leaving less possibility for nutrient
absorption. The opposite occurs for the case of
Rey < 10, where there is more mixing near the
polyp, but the resulting flows are unable to remove
wastes away from the polyp.

To compare the relative strength of the flow
towards the polyp, we averaged the xz-component
of the velocity (in the horizontal direction) within
a box that was drawn from the tips of the tenta-
cles during full expansion to one tentacle length
to the left of that point (—0.009m < X <
—0.0045m), and in the z-direction, the box was
drawn along the diameter of the polyp fully ex-
panded (—0.0045m < Z < 0.0045m). In the
vertical direction, the box was drawn from the
polyp base to the top of the fully contracted ten-
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tacle (—0.0lm < Y < —0.0063m). The average
horizontal dimensionless velocity (tentacle lengths
per pulse) versus time for five pulses is given in
Figure @ for Rey = 0.5, 1, 5, 10, 20, 40, and 80.

For all cases of Re; considered as the polyp be-
gins to contract, the average flow is away from the
polyp during the first 5% of the pulsation period,
with the highest average velocities corresponding
to the lowest Rey, Rey = 0.5. The lowest average
velocity corresponds to the highest Re, Rey = 80.
The initial negative values are due to the whip-
like motion of the tentacles at the beginning of
contraction. Highest average velocities are seen at
the lowest Rey due to the relatively larger bound-
ary layers. After the initial contraction motion,
the average velocities become positive, indicating
bulk flow towards the polyp. For all Rey, the
average velocity increases until the contraction
phase is over. The highest peak average velocity,
again, corresponds to the lowest Rey, Rey = 0.5;
however, for Rey > 10, their associated peaks of
average velocity are almost equivalent. Moreover,
for Rey > 10, the average velocity remains
towards the polyp and almost constant during the
expansion and relaxation phases. At the start of the
next contraction phase, the average velocity dips,
once again within the first ~ 5% of the pulsation
cycle. In contrast, for Re; < 5, once the expansion
phase begins, the average velocity decreases. For
Rey < 1, the average velocity decreases, reaches
a minimum, and then approaches zero. In the case
of Rey =5, during expansion, the average velocity
monotonically decreases toward zero before the
start of the next pulsation cycle.

Figure 10| shows temporally and spatially aver-
aged flows as a function of Rey. The vertical flow
above the coral from Figure [§] is temporally aver-
aged during the fourth pulse and plotted in Figure
[TOA. Figure [IOB illustrates the horizontal flow in
Figure 0] temporally averaged over the fourth pulse
as a function of the Rey. Both graphs highlight
two flow phenomena that depend on Rey. As the
Rey is lowered, the tentacles entrain a larger vol-
ume of fluid. This in turn leads to larger spatially
averaged velocities due to the wider jet. Also as the

Biomath 6 (2017), 1712169, http://dx.doi.org/10.11145/j.biomath.2017.12.169
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Fig. 10: Temporally and spatially averaged vertical
flow above the polyp (A), horizontal flow in the
x—direction towards the polyp (B), and velocity
magnitude between the tentacles (C) as a function
of Rey. Note that the velocities are nondimension-
alized by the tentacle length and pulse duration.
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Rey is decreased, the flow becomes increasingly
reversible: the flow moves up and away from the
polyp during contraction and back towards the
polyp during expansion. Net volumetric flow is
maximized for Re; between about 20 and 30.
Reduction in net flow is observed for Re; ~ 1
and lower because the flow becomes reversible.
The net flow is reduced as Rey increases above 30
because the width of the upwards jet decreases.

As a coarse metric of the amount of mixing
near the polyp, the magnitude of the velocity of
the flow between the tentacles, was spatially and
temporally averaged during the last pulse in a
volume defined by —0.00lm < X < 0.001m,
—0.009m < Y < —0.001lm, and —0.001m <
Z < 0.001m. This averaged flow as a function
of Rey is shown in Figure @p The magnitude
of flow generally decreases for increasing Rey,
suggesting that more of the fluid is directed into a
narrow upward jet as the polyps grow larger. On
the other hand, strong flow is generated between
the tentacles at Rey below the biologically relevant
range.

A. Lagrangian Coherent Structures

Figure [I1] shows contours of the logarithm of
the finite-time Lyapunov exponents (FTLE) which
illustrate the instantaneous Lagrangian coherent
structures (LCS). The contours are shown in a
2D slice through the central axis during the fourth
pulsing cycle for Rey =0.5, 20, and 80. Note that
the LCS were calculated using the entire 3D flow
field. Small values of the FTLE highlight regions
where flow is attractive, and large values of the
FTLE indicate areas in which the flow is repelling
[30]. In the case of the polyp, LCSs can be used
to highlight regions of fluid that the polyp may
sample or that may pass by without interacting
with it.

In the biologically relevant case (B) and at
higher Rey (C), we see that fluid is pulled to-
wards the polyp and pushed into the upward jet
during the contraction phase (¢t = 0.0737 and
t = 0.17T). The FTLE values are small between
the tentacles during contraction, indicating that this
fluid is pushed upward and into the vertical jet
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t=0.073T t=0.17T
t=0.37T t=0.51T

t=0.37T

Fig. 11: Contour plot of the finite time Lyapunov
exponents (FTLE) illustrating the instantaneous
Lagrangian coherent structures during a single
polyp’s pulsing cycle for (A) Rey = 0.5, (B)
Rey = 20 and (C) Rey = 80, using a logarithmic
scale.
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during this phase. The large FTLE values near
the tentacles show that fluid is repelling around
the tentacles and the starting vortices. Comparison
with the viscous dominated case at Rey = 0.5
(A) shows a region of larger FTLE values between
the tentacles. This indicates that the fluid near the
bottom of the polyp does not mix as well with
the upward jet and is not fully expelled during
contraction.

During expansion (t = 0.377 and t = 0.517),
large FTLE values directly above the polyp and
between the tentacles indicate a region of mixing
that is separated from the upward jet in the bio-
logically relevant case (Rey = 20). We also see
larger FTLE values in the higher Rey case (C),
but now a more complicated pattern between the
tentacles indicating separated mixing regions. For
the viscous dominated case (A), the FTLE values
are low once the tentacles have partially expanded
(t = 0.51T). This indicates that the upward jet
and the mixing region between the tentacles is
no longer separated, and indeed fluid is pulled
from above the polyp and into the region between
the tentacles. At this Rey, a new volume of fluid
would not be sampled during each pulse.

IV. CONCLUSION

The results of this paper highlight important
Rey transitions in the exchange currents generated
by pulsing soft coral. From field measurements,
we determined the Rey of a coral polyp to be
19.64 + 7.82 with a range of about 8 to 36. In this
regime, the flow around the coral polyp is defined
by a continuous upward jet, nearly continual radial
flow towards the polyp, a slow region of mixing
between the tentacles during expansion, and the
ejection of the fluid volume into the upward jet
during contraction. This pattern implies that a new
volume of fluid is brought to the polyp during
each polyp cycle that is slow mixed around the
tentacles, allowing time for the removal of oxygen
from the tissues. Note that the continuous upward
jet is significant since, at these scales, the polyp is
able to remove waste up and away from the coral
colony.
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For Rey < 5 (below the biologically relevant
range), significant backflow is observed during the
pulsing cycle. This would result in resampling
of the same fluid and reduce waste removal and
nutrient exchange. For Rey > 40 (above the bi-
ologically relevant range), the continuous upward
jet becomes narrower, reducing the net transport of
fluid away from the coral. The magnitude of flow
between the tentacles is also reduced, which could
result in less nutrient absorption and exchange.

Spatially and temporally averaged horizontal
flow towards the polyp and vertical flow above the
polyp show that mass transfer is enhanced across
the biologically relevant range of 8 < Rey < 36.
Spatially and temporally averaged velocity mag-
nitude between the tentacles show that there is
less transport near the tentacle base at higher Rey.
Our limited sample of live polyps is insufficient,
however to show that an active polyp may not be
found at either higher or lower Rey. Accordingly,
it would be interesting to extensively search for the
smallest and largest pulsing corals, calculate their
effective Rey, and determine whether or not their
pulsing behavior is adapted to push the behavior
into more viscous or inertial dominated regimes.
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APPENDIX

A three-dimensional formulation of the im-
mersed boundary method is discussed here. For

Page 11 of [I4]


http://dx.doi.org/10.11145/j.biomath.2017.12.169

Julia E. Samson, Nicholas A. Battista, Shilpa Khatri, Laura A. Miller, Pulsing corals: A story of scale ...

a full review of the immersed boundary method,
please see Peskin [20].

A. Governing Equations of IB

The governing equations for an incompressible,
viscous fluid motion are given below:

p[aa—l:(x, t) + u(x,t) - Vu(x, t)]
= Vp(x,t) + pAu(x,t) + F(x,t), (2)

V-u(x,t) =0, 3)

where u(x,t) is the fluid velocity, p(x,t) is the
pressure, F(x,t) is the force per unit area applied
to the fluid by the immersed boundary, p and
w are the fluid’s density and dynamic viscosity,
respectively. The independent variables are the
time ¢ and the position x. The variables u, p, and
F are all written in an Eulerian frame on the fixed
Cartesian mesh, x.

The interaction equations, which handle the
communication between the Eulerian (fluid) grid
and Lagrangian (boundary) grid are written as the
following two integral equations:

F(x,t) = /f(s,t)5 (x —X(s,t))dg 4

U(X(s,t)) = /u(x,t)é(x — X{(s,t))dx (5)

where f(s,t) is the force per unit length applied
by the boundary to the fluid as a function of
Lagrangian position, s, and time, ¢, §(x) is a three-
dimensional delta function, and X(s,t) gives the
Cartesian coordinates at time ¢ of the material
point labeled by the Lagrangian parameter, s.
The Lagrangian forcing term, f(s,t), gives the
deformation forces along the boundary at the La-
grangian parameter, s. Equation (4) applies this
force from the immersed boundary to the fluid
through the external forcing term in Equation (2).
Equation (5) moves the boundary at the local fluid
velocity. This enforces the no-slip condition. Each
integral transformation uses a three-dimensional
Dirac delta function kernel, §, to convert La-
grangian variables to Eulerian variables and vice
versa.
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The way deformation forces are computed, e.g.,
the forcing term, f(s, t), in the integrand of Equa-
tion (), is specific to the application. To prescribe
the motion of the coral boundary, the boundary
points are tethered to target points, which can
be moved in a prescribed fashion. The prescribed
motion of the boundary itself comes through a
penalty term, tethering the Lagrangian points to
the target points. The equation describing this
model is

£(s,t) = kiarg (Y(s,t) — X(s,1)), ©6)

where kg is a stiffness coefficient and Y (s, ?)
is the prescribed position of the target boundary.
Note that Y(s,t) is a function of both the La-
grangian parameter, s, and time, ¢. Details on other
forcing terms can be found in [26]], [35].

The delta functions in these Eqs.(@{3)) are the
heart of the IB. In approximating these integral
transformations, the following discretized and reg-
ularized delta functions, J;,(x) [20], are used,

a9 = e (3) 2 (7) 0 (7).
)

where ¢(r) is defined as

%(3—2\r|+\/ 1+4|r|—4r2), 0<|r|<1,
L(5=2[r|+/T+12[r[—4r?),1<|r| <2,
0,

2 <|r|.

(N

¢(r)=

B. Numerical Algorithm

As stated in the main text, we impose periodic
and no slip boundary conditions on the rectangular
domain . To solve Equations (2)), (3),() and (5) we
need to update the velocity, pressure, position of
the boundary, and force acting on the boundary at
time n + 1 using data from time n. The IB does
this in the following steps [20], with an additional
step (4b) for IBAMR [36], [27]:

Step 1: Find the force density, F" on the
immersed boundary, from the current boundary
configuration, X".

Step 2: Use Equation to spread this bound-
ary force from the Lagrangian boundary mesh to
the Eulerian fluid lattice points.

Step 3: Solve the Navier-Stokes equations,
Equations (2)) and (3)), on the Eulerian grid. Upon
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doing so, we are updating u”*! and p"*! from u”,
p", and f. Note that a staggered grid projection
scheme is used to perform this update.

Step 4: (4a) Update the material positions,
X"*1 using the local fluid velocities, U™ !, com-
puted from u”*! and Equation . (4b) If on a
selected time-step for adaptive mesh refinement,
refine the Eulerian grid in areas of the domain
that contain the immersed structure or where the
vorticity exceeds a predetermined threshold, .

We note that Step 4b is from the IBAMR
implementation of IB. IBAMR is an IB frame-
work written in C++ that provides discretization
and solver infrastructure for partial differential
equations on block-structured locally refined Eu-
lerian grids [37]], [38] and on Lagrangian meshes.
Adaptive mesh refinement (AMR) achieves higher
accuracy between the Lagrangian and Eulerian
mesh by increasing grid resolution in areas of
the domain where the vorticity exceeds a certain
threshold and in areas of the domain that contain
an immersed boundary. AMR improves the com-
putational efficiency by decreasing grid resolution
in areas that do not necessitate high resolution.

The Eulerian grid was locally refined near both
the immersed boundaries and regions of vortic-
ity where |w| > 0.50. This Cartesian grid was
structured as a hierarchy of four nested grid levels
where the finest resolved grid was assigned a reso-
lution of dx = D /1024, see Table|ll A 1:4 spatial
step size ratio was used between each successive
grid refinements. The Lagrangian spatial step res-
olution was chosen to be twice the resolution of
the finest Eulerian grid, with ds = D/2048.
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