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Abstract—Optimal control problems in mathe-
matical epidemiology are often solved by Hamil-
tonian methods. However, these methods require
conditions on the problem to guarantee that they
give global solutions. Because of the improved com-
putational power of modern computers, numerical
approximate solutions that systematically try a large
number of possibilities have become practical. In
this paper we give an efficient implementation of
an enumerative numerical solution method for an
optimal control problem, which applies to cases
where standard methods cannot guarantee global
optimality. We demonstrate the method on a model
where vaccination and treatment are used to control
the level of prevalence of an infectious disease. We
describe the solution algorithm in detail, and verify
the method with simulations. We verify that the
enumerative numerical method produces solutions

that are locally optimal.

Keywords-Epidemic model, vaccination, treat-
ment, optimal control, numerical method, enumer-
ative method, global optimum.

I. INTRODUCTION

Within the field of epidemiology, extensive re-
search efforts have been devoted to establishing
mathematical models that accurately character-
ize disease dynamics, including the effects of
disease controls. Numerous mathematical tech-
niques have been developed since the ground-
breaking 1926 paper by A. G. M’Kendrick [37].
The most basic and most widely used models
in epidemiology are multi-compartment models
such as SIS (susceptible-infected-susceptible), SIR
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(susceptible-infected-recovered) and similar mod-
els. The SIS model is suitable to model dis-
eases which do not confer immunity. Some of
these diseases are discussed in [1] and [28]. In
the basic SIS model, individuals move between
two compartments, susceptible and infected [22].
Numerous elaborations of the basic model have
been developed, such as age-structured epidemic
models [15], stochastic models [39], and models
with vaccination [23]. Important model properties
include the basic reproduction number, equilibria
and stability characteristics.

In mathematical models with controls, finding
optimal controls is an important problem with
significant practical implications. Many general
numerical techniques have been developed for
this purpose [8]. In [10] it is suggested a new
methodology to find solution for an optimal con-
trol problems with delays by shooting method
which is mixed with continuation on the delay. A
formulation on binary indicator functions, direct
and simultaneous adaptive collocation approach
to optimal control are developed in [9] while
in [13] proposes a numerical solution technique
for constrained optimal control problems with pa-
rameters where an extension penalty function is
used to adjust the state, controls, and parameter
inequality constraints. In [26] an approach with
Haar wavelets method is applied for finding the
piecewise constant feedback controls for a finite-
time linear optimal control problem of a time-
varying state-delayed system. A direct method
based on hybrid of block-pulse functions and
Legendre polynomials is discussed in[35] while
a direct collocation method is used in [49] to
solve numerically optimal control problems. In
[50], a sequential quadratic programming is used
to solve an optimal control problem which has
convex control constraints. [43] studies dynamical
tunneling versus fast diffusion for a non-convex
Hamiltonian and find that dynamical tunneling
results at an important quicker rate than classical
transport while [14] develops for certain non-
convex Hamilitonian-Jacobi Equations, their ho-
mogenization and non-homogenization. An algo-

rithm for solving a non-convex state-dependent
Hamilton-Jacobi partial differential equations is
established in [12].

Researchers have also been involved in finding
solutions to the infectious diseases and techniques
to control them. In [40], R. M. Neilan and S.
Lenhart introduce the theory of optimal control
applied to systems of ordinary differential equa-
tions with an application on SEIR model while
in [33] S. Lenhart and J. T. Workman give an
interesting overview on optimal control applied to
biological models. Many authors have focused on
this topic of optimal control of different diseases.
Treatment in the SIS model under learning have
been considered in [34], while in [19], treatment is
used in the controlled SIS model, but considers dif-
ferent cost structures than the earlier literature. For
controlling an epidemic spread, optimal quarantine
programs are used in [47], while [16] and [1]
consider non-vaccine prevention in the SI and SIS
models respectively. The prevention by strategic
individuals in linked sub-populations is analyzed
in [45], while [46] considers prevention through
social distancing. The prevention and treatment
in an SIS framework are considered in [17]. In
[51], vaccination and treatment are used in an
SIR setting and simulate optimal paths while a
similar approach is discussed in [5]for an HIV type
disease. In [29], it was examined the fundamental
role of three type of controls, personal protection,
treatment and mosquito reduction strategies in
controlling malaria.

In addition to prevention and treatment strate-
gies and the allocation of resources available to
reduce these diseases, researchers have focused in
the development of techniques to evaluate which
are more effective for approximating the solutions
of those epidemic models. In [52], A. Zeb et
al. studied the SEIR and employed the multi-
step generalized differential transform method and
compared the results with those obtained by
the fourth-order Runge-Kutta method and non-
standard finite difference method in the case of
integer. In [2] F.S. Akinboro et al. used differential
transformation method and variational iteration
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method to obtain the approximate solution of SIR
model with initial condition. O. J.Peter and al.[3]
use the differential transform method to study the
transmission dynamics of typhoid fever diseases in
a population while [38] uses differential transfor-
mation method and variational iteration method in
finding the approximate solution of Ebola model.
In [20], it is investigated the application of matrix
nonstandard finite difference schemes to obtain
numerical solutions of epidemic models while [4]
applies Non Standard Finite Difference (NSFD)
Scheme to a modified SIR epidemic model with
the effect of time delay. Laplace-Adomian Decom-
position Method (LADM) in [21] is used to study
the fractional order childhood disease model and
shows that this method provides excellent numeri-
cal solutions for nonlinear fractional order models
compared to homotopy analysis, homotopy pertur-
bation method, and fourth order Runge-Kutta. In
[7], the Homotopy Analysis Method (HAM ) is
applied and finds that it is successfully for finding
the approximate solution of fractional SIR model.
In [6] A. J. Arenas and al. developed the non
standard finite difference scheme with Conserva-
tion Law (NSFDCL) for predictorcorrector type
for epidemic models and compared the result with
the RungeKutta type schemes. V. K. Srivastava
and al. [48] compare the solution from Euler’s
and RK4 methods with those obtained by the
differential transform method when they studied
HIV infection of CD4+ T cells.

In this paper, we will investigate the effect of
the vaccination and treatment on an SIS epidemic
model. In this model, neither the Pontryagin theo-
rem for local optimality nor the Arrow theorem for
global optimality applies, so the usual analytical
methods for finding locally or globally optimal
solutions cannot be used. We develop instead a
numerical algorithm that first finds the overall
best control from a large class of controls, and
then improve it successively until local optimal
conditions are satisfied.

The paper is organized as follows. In Section
2, we recall basic analytical results on optimal
control problems that give necessary and suffi-

cient conditions for a globally optimal solution.
In Section 3, we establish an SIS epidemic model
under treatment and vaccination controls, and in
Section 4, we formulate objective functions for
the model. In Section 5 we discuss the necessary
conditions for locally optimal control vaccination
and treatment. Section 6 describes an enumerative
numerical method for finding near-optimal con-
trols, while in Section 7, we present simulation
results and conclude.

II. SOME BASIC RESULTS ON OPTIMAL

CONTROL PROBLEMS

Two of the foundational results in optimal con-
trol theory are Pontryagin’s Maximum Principle
and the Arrow Sufficiency Theorem. Pontryagin’s
theorem gives conditions that a locally optimal so-
lution must satisfy; while Arrow’s theorem guaran-
tees global optimality of a locally optimal solution.
These theorems are stated below.

Theorem 2.1: (Pontryagin’s maximum
principle)[33] If u∗(t) and x∗(t) are optimal
for the problem

max
u

J [x(t), u(t)], where

J [x(t), u(t)] =

∫ tf

t0

f(t, x(t), u(t))dt,
(1)

subject to{
dx
dt = g(t, x(t), u(t)),

x(t0) = x0, .
(2)

where the functions f and g are continuously
differentiable and x(t) is piecewise differentiable.
Then there exists a piecewise differentiable adjoint
function λ(t) such that

H(t,x∗(t),u(t),λ(t))≤H(t,x∗(t),u∗(t),λ(t)), (3)

for all controls u at each time t, where the Hamil-
tonian H is given by

H(t, x(t), u(t), λ(t)) =

f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t)),
(4)

and{
λ′(t) = −∂H(t,x∗(t),u∗(t),λ(t))

∂x ,

λ(tf ) = 0.
(5)
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Theorem 2.1 is proved in [44].

The following theorem gives sufficient condi-
tions under which local optima are also globally
optimal.

Theorem 2.2: (The Arrow theorem)[11] For the
optimal control problem (2), the conditions of the
maximum principle are sufficient for the global
minimization of J [x(t), u(t)] if the maximized
Hamiltonian function H , defined in(4), is convex
in the variable x for all t in the time interval [t0, tf ]
for the given λ.

Theorem 2.2 is proved in [24] and [36].

When the conditions of Arrow’s theorem are not
satisfied, it may be difficult to guarantee global
optimality of a locally optimal solution. In this
case, numerical algorithms that widely explore the
space of possible controls may be used to avoid
converging prematurely to a local optimum that
is not globally optimal. The strategy used in this
paper is to find the best control from a large
class of controls and then improve it successively
until local optimal conditions are satisfied. While
this strategy does not necessarily give the global
optimum, by first doing a preliminary search over
a large class of controls it does help to prevent
obtaining a suboptimal solution that is only locally
optimal.

III. SIS MODEL UNDER TREATMENT AND

VACCINATION CONTROLS

The SIS (Susceptible-Infected-Susceptible)
model is the model where a susceptible individual
is sick and when he recovers immediately
becomes susceptible again. In this basic model,
each individual belongs in one of the following
two states: susceptible or infectious. In the
literature, many studies have been made to
analyze the importance of the use vaccination and
treatment on the spread of infectious diseases by
using the control theory ([25]; [27]; [31]; [30];
[32]). Those optimal controls techniques play
the role of limiting the spread of the infectious
disease from the concerned population. In this

section, we will etablish the controlled SIS system
.

The classical SIS epidemic model under vac-
cination and treatment has four groups or com-
partments, whose populations are represented by
four letters: S, the number of individuals who
are healthy but susceptible to the infection; I , the
number of individuals who have been contami-
nated and can spread the infection to susceptibles;
T , the number of individuals who have undergone
treatment to cure an infection; and V the number
of individuals who have been vaccinated when
susceptible. We also denote the total population
by N , so that N = S+I+V +T . Note S, I, V, T
may all vary with time, so that all are represented
as functions of time.

In our model we suppose that individuals enter
and leave the population (either by birth/death
or immigration/emigration), but the total popu-
lation remains constant. Individuals leave from
each group in the same proportion, but all incom-
ing individuals are susceptible. We suppose that
susceptibles are infected by direct contact with
infected individuals, so that susceptibles’ rate of
infection is proportional to the number of infected
individuals. We suppose that susceptible individu-
als are vaccinated at a given rate (which may de-
pend on time), and infected individuals are treated
and become no longer infective at a different rate
(also possibly time-dependent). Finally, we assume
that the vaccination is not efficacious at hundred
percent, the vaccinated individuals who contact
infected individuals may become reinfected at the
small rate. These assumptions are represented by
the following system of ordinary differential equa-
tions:

dS
dt = µN − βSI + γI − µS − u1S,
dI
dt = βSI − (µ+ γ + u2)I + βεV I,
dV
dt = u1S − µV − βεV I,
dT
dt = u2I − µT,
N = S + I + T + V,

(6)

with initial conditions

S(0)=S0, I(0)=I0, V (0)=V0, T (0)=T0, (7)
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and control conditions

0 ≤ ui(t) ≤ uimax ≤ 1, i = 1, 2.

The parameters in (6) have the following sig-
nificances: µ and γ are the population replace-
ment rate and the recovery rate from infection
respectively; β = λ

N is the disease transmission
coefficient, so that 1/β is the average number of
infective contacts per unit time which result in
the susceptible individual becoming infected; ε is
the fraction of vaccinated individuals for whom
the vaccine is ineffective; and u1(t) and u2(t) are
the proportionate vaccination and treatment control
levels, so that for example u1(t)S(t) is the number
of susceptible individuals vaccinated per unit time
at time t.

We may rewrite the system (6) in matrix format.
Define

~x(t) ≡ (S(t), I(t), V (t), T (t))T , (8)

and define the matrix A(~x(t)) as follows:

A(~x(t)) =−βI(t)−u1(t)−µ γ 0 0
βI(t) −(µ+γ+u2(t)) βεI(t) 0
u1(t) 0 −(µ+βεI(t)) 0
0 u2(t) 0 −µ

, (9)

where N = S0 + I0 + V0 + T0. Then system (6)
can be written as

d

dt
~x(t) = A(~x(t))~x(t) +


µN
0
0
0

 , (10)

with initial conditions ~x(0) = (S0, I0, V0, T0).

Definition 3.1: [18]. Metzler matrices are
square (real) matrices in which all the off-diagonal
elements are non-negative: aij ≥ 0, ∀i 6= j.
The matrix A is a Metzler matrix according to
Definition (3.1).

Proposition 3.1: The set Γ = {(S, I, V, T ) ∈
R4

+} is positively invariant for the system (6).
Proof: Whenever xj = 0 and xi ≥ 0 for

i 6= j, since A is Metzler matrix it follows
that dxj/dt ≥ 0. It follows that if xi(0) ≥ 0
∀i, then none of the xi(t) will change sign for

t ≥ 0. Therefore, we conclude that the system (6)
determined by the matrix(9) preserves invariance
of the non-negative cone R4

+.

IV. OBJECTIVE FUNCTIONS FORMULATION

In this section, we establish objective functions
in case of nonlinear cost function and the piece-
wise linear cost function.

A. Original objective function

We suppose a nonlinear cost function in order to
take into account various types of costs affecting
the Susceptible and Infected populations. The cost
function for system (6) takes the following form:

J(u1, u2, S, I) =∫ tf

0

[
f1(u1(t), S(t))+f2(u2(t), I(t))

]
dt+zI(tf ),

(11)
where

f1(u1, S) ={
c′0 if u1 = 0,

c0 + c1u1S + c2u
2
1 if 0 < u1 ≤ u1max,

(12)

and

f2(u2, I) ={
d′0 + d2I if u2 = 0,

d0 + d1u2I + d2I if 0 < u2 ≤ u2max,
(13)

The different terms in (11)-(13) are motivated
as follows. The functions f1 and f2 represent cost
rates associated with vaccination and treatment re-
spectively, while the final additive term in (11) rep-
resents costs attributed to latent infections which
remain after the treatment period is complete.

As far as vaccination cost, we expect a fixed,
low-level maintenance cost rate during time peri-
ods when no active vaccination efforts are being
made: this fixed cost rate is represented by the
constant c′0 in (12). When vaccination efforts are
being prosecuted, higher fixed costs are incurred,
including salaries and facilities: this higher cost
level is represented by c0 in (12), where c0 > c′0.
We suppose that each vaccination has a fixed
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cost c1, which multiplies the total vaccination rate
u1S in (12). Finally, the quadratic term c2u

2
1 is

included to model diminishing returns of higher
levels of vaccination effort, including the cost
of vaccinating harder-to-reach or less cooperative
individuals.

As far as treatment cost, as with vaccination we
also expect a low-level maintenance cost rate even
when no treatments are given, which is modeled
by the constant d′0 term in (13). There is also
a cost rate per infected individual (which may
include both financial cost and quality-of-life cost),
expressed by the coefficient d2 in (13). Lastly, each
patient who receives treatment has a cost rate d2,
which multiplies the treatment rate u2I to give the
non-fixed cost rate associated with patient care.

The values u1max and u2max represent maxi-
mum population penetration rates for vaccination
and treatment, respectively. For example, a value
u1max = 0.05 indicates that at most 5% of the
susceptible population can be vaccinated per basic
time unit (which is typically taken as days); while
a value u2max = 0.1 means that at most 10% of
the infected population is treated per day.

In summary, the optimization problem is to find
the controls (u∗1, u

∗
2) that minimize the objective

function:

(u∗1, u
∗
2) = argmin

u1,u2

J(u1, u2, S, I), (14)

where (u1, u2) ∈ U such that

0 < u1 < u1max and 0 < u2 < u2max. (15)

In this problem, the cost function is not contin-
uously differentiable, and the Hamiltonian is not
convex. So neither Theorem 2.1 nor Theorem 2.2
can be applied in this case.

B. Piecewise linear objective function

Since we are using an enumerative approach
to numerical solution, it is preferred to have a
finite number of possible optimal control values. In
Section V, we will show that the optimal treatment
level is either 0 or u2max, given the cost function
(13). However, with the cost function (12) there
is an infinite number of possible optimal values.

For this reason, we consider a modification of
the vaccination cost function f1 which closely
approximates (12), but which leads to a finite
number of optimal vaccination levels (as will be
shown in the next section).

The modified function is piecewise linear with
the following mathematical form:

f1(u1, S) = (16)
c′0 if u1 = 0,

c0 + c1u1S + c′2u1 + c′3(u1 − u1mid)+,
if 0 < u1 ≤ u1max,

where the function x+ is the ramp function,

x+ = max(x, 0). (17)

The constants u1mid, c′2 and c′3 may be chosen
to approximate the quadratic term c2u

2
1 in (12).

Figure 1 shows various possibilities for piecewise
linear approximations. Given the constant c2, the
values u1mid = 0.5, c′2 = 0.5c2 and c′3 = c2
produce a cost function that is an upper bound to
the quadratic term c2u

2
1; the values u1mid = 5/9,

c′2 = 0.2c2, and c′3 = 2c2 produce an effective
lower bound; and the values u1mid = 0.5, c′2 =
(
√

2− 1)c2 and c′3 = (3−
√

2)c2 gives an approx-
imation that minimizes the maximum deviation
(maximum deviation is equal to 0.043c2). Using
these different functions, upper and lower bounds
on the optimal cost for the original quadratic cost
function (12) may be obtained.

V. LOCAL OPTIMALITY CONDITIONS FOR THE

NON-AUTONOMOUS VACCINATION AND

TREATMENT CONTROL PROBLEM

A solution ~x(t) with controls u1(t) and u2(t)
is locally optimal if small perturbations of the
controls u1 and u2 during small time intervals
never decrease the cost. This means that there is
no way to improve the solution by making slight
adjustments to the controls. Local optimization is
applicable to the global problem in that a globally
optimal solution must also be locally optimal.
Hence local optimality is a necessary condition
for global optimality. In this section, we explicitly
calculate the effect of local changes in the controls
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Figure 1. Approximation of the quadratic cost function with piecewise linear functions. The linear functions shown give
upper and lower bounds to the quadratic cost function, as well as a best approximation that minimizes the maximum deviation
between the quadratic cost function and piecewise linear approximation.

u1(t) and u2(t) on the cost function. Changes in
the two controls are considered separately, because
in practice they can be varied independently. This
gives us a way to identify local optima, which
correspond to control levels for which differential
changes yield no improvement.

In previous sections, we have considered the au-
tonomous problem in which the parameters β, ε, γ,
and λ and also the costs c0, c′0, d0, d

′
0, c1, c2, d1, d2

are constants independent of time. In this section
we consider the more general non-autonomous
problem, in which all parameters can be continu-
ous function of time. The reader should understand
that parameters and costs in this section now rep-
resent time dependent functions (e.g. β represents
β(t)).

A. Necessary conditions for the optimal control
vaccination with simplified cost function

First, we will perturb the control u1(s) and
calculate the effect on the cost function. Given a
control u1(t), the perturbed control u′1(s, t) differs

from u1(t) by a small amount on an interval of
length δ, as follows:

u′1(s, t) ={
u1(t) + du1 for s < t < s+ δ,

u1(t) otherwise,

(18)

where s is a fixed value between 0 and tf . The
system evolution x′(s, t) corresponding to controls
u′1(s, t) and u2(t) may be written

~x ′(s, t) ≡ (S′(s, t), I ′(s, t), V ′(s, t), T ′(s, t))T ,
(19)

and satisfies the equations

~x′(s, 0) = ~x(0),

∂

∂t
~x′(s, t)=


A(~x′(t))~x′(s, t)

for t < s and t > s+ δ,

A(~x(t))~x′(s,t)−S′(s,t)du1~∆10

for s ≤ t ≤ s+ δ,

(20)
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where
−→
∆10 ≡ (1, 0,−1, 0)T . (21)

System (20) corresponds to system (10) with per-
turbed control u′1(s, t) on the interval s ≤ t ≤
s + δ. Note that ~x′(s, t) = ~x(t) for t ≤ s since
~x′(s, 0) = ~x(0) and ~x′(s, t) and ~x(t) satisfy the
same differential equation on [0, s]. In order to
compute the new cost associated with the per-
turbed solution x′(s, t) with controls u′1(s, t) and
u2(t), we need to solve (20) for x′(s, t). Since
equations (20) have different forms on the intervals
s < t < s + δ and t > s + δ, we will treat these
two intervals separately. First we find the solution
on s ≤ t ≤ s+ δ. For t > s, we may define:

(∆1S(s, t),∆1I(s, t),∆1V (s, t),∆1T (s, t)) ≡
1

a

[
S(t)− S′(s, t), I(t)− I ′(s, t),

V (t)− V ′(s, t), T (t)− T ′(s, t)
]
,

(22)
where

a = S(s)du1δ. (23)

We also use the notation:

~∆1(s,t)≡(∆1S(s,t),∆1I(s,t),∆1V(s,t),∆1T(s,t))
T.

(24)
Note that ~∆1(s, s) = ~x(s)− ~x′(s, s) = ~0.

For simplicity, in the remaining
discussion we will write the functions
S, S′, I, I ′, V, V ′, T, T ′,∆1,∆1,∆2 without
arguments (e.g. we write I ′(s, t) as I ′). From (10)
and (20) we have for interval s < t < s+ δ,
dS

dt
=µN − βSI + γI − µS − u1S,

dS′

dt
=µN−βS′I ′+γI ′−µS′−u1S′−S′du1.

(25)

Using the notations (23) and (24) for the system
(25), we obtain for s < t < s+ δ

dS

dt
− dS

′

dt
=− aβ(I∆1S+S∆1I)+aγ∆1I

− aµ∆1S−au1∆1S+S′du1+O(a2).
(26)

Using similar computations, we may obtain cor-
responding equations for infected, vaccinated, and
treated compartments on the interval s < t < s+δ:

dI

dt
− dI

′

dt
=aβ(∆1SI+∆1IS)−(µ+γ+u2)a∆1I

+ βε(a∆1IV + a∆1V )I +O(a2). (27)
dV

dt
− dV

′

dt
=au1∆1S−aµ∆1V

− aβε(∆1V I+∆1IV )−S′du1+O(a2). (28)
dT

dt
− dT ′

dt
= au2∆1I − aµ∆1T . (29)

Equations (26)-(29) may be rewritten in matrix
form:

∂

∂t

[
~∆1(s, t)

]
=(−βI−u1−µ −βS+γ 0 0

βI −(µ+γ+u2)+βS+βεV βεI 0
u1 −βεV −µ−βεI 0
0 u2 0 −µ

)
~∆1(s, t)

+
~∆10

δ
+O(a). (30)

Using (30), we have on t ∈ [s, s+ δ]

∂~∆1(s, t)

∂t
=Ã(~x(t))~∆1(s, t)+

1

δ

−→
∆10+O(a), (31)

where

Ã(~x(t)) = A(~x(t)) +

(
0 −βS 0 0
0 β(S+εV ) 0 0
0 −βεV 0 0
0 0 0 0

)
. (32)

We also note ~∆1(s, s) = ~0. To lowest order in δ,
the solution of (31) gives

~∆1(s, s+ δ) ≈ ~∆10.

On the interval t ∈ [s+δ, tf ], ~∆1(s, t) is a solution
to

∂~∆1(s, t)

∂t
= Ã(~x(t))~∆1(s, t) (33)

We are now ready to compute the difference
between cost functions for x′ and x. We denote
these cost functions by J ′ and J respectively. For
simplicity, we first consider the case where c′0 = c0
and d′0 = d0.

From (11),(13) and (16), we obtain the sequence
of equations (34)-(36), where H(x) in (36) denotes

Biomath 8 (2019), 1912137, http://dx.doi.org/10.11145/j.biomath.2019.12.137 Page 8 of 22

http://dx.doi.org/10.11145/j.biomath.2019.12.137


V. Mbazumutima, C. Thron, L. Todjihounde, Enumerative numerical solution for optimal control using ...

J ′ =

∫ s

0

[
[c0 + c1u1(t)S(t) + c′2u1 + c′3(u1 − u1mid)+] + [d0 + d1u2(t)I(t) + d2I(t)]

]
dt

+

∫ s+δ

s

[
c0 + c1(u1(t) + du1)S

′(s, t) + c′2(u1(t) + du1) + c′3((u1 + du1)− u1mid)+

+ d0 + (d1u2(t) + d2)I
′(s, t)

]
dt

+

∫ tf

s+δ

[
[c0+c1u1(t)S

′(s, t)+c′2u1+c′3(u1−u1mid)+]+[d0+(d1u2(t)+d2)I
′(s, t)]

]
dt

+ I ′(s, tf );

(34)

J =

∫ s

0

[
[c0 + c1u1(t)S(t) + c′2u1 + c′3(u1 − u1mid)+] + [d0 + (d1u2(t) + d2)I(t)]

]
dt

+

∫ s+δ

s

[
[c0 + c1u1(t)S(t) + c′2u1 + c′3(u1 − u1mid)+] + [d0 + (d1u2(t) + d2)I(t)]

]
dt

+

∫ tf

s+δ

[
[c0 + c1u1(t)S(t) + c′2u1 + c′3(u1 − u1mid)+] + [d0 + (d1u2(t) + d2)I(t)]

]
dt

+ I(tf );

(35)

J ′−J
du1

=

∫ s+δ

s

[
−S(s)δ (c1u1(t)∆1S(s, t)+[d1u2(t)+d2]∆1I(s,t))+c1S

′
1(s,t)+c′2+c′3H(u1−u1mid)

]
dt

− S(s)δ

[∫ tf

s
[c1u1(t)∆1S(s, t) + (d1u2(t) + d2)∆1I(s, t)]

]
dt− S(s)δ∆1I(s, tf ).

(36)

the Heaviside (step) function (note the Heaviside
function is the derivative of the ramp function).

Taking the limit as du1 → 0 for small δ we
obtain

∂J

∂u1
=δ
[
c1S+c′2+c′3H (u1(s)−u1mid)−Ψ1

]
,

(37)
where

Ψ1≡S(s)

[∫ tf

s

[
c1u1(t)∆1S(s, t)

+ (d1u2(t)+d2)∆1I(s, t)
]
dt+∆1I(s, tf )

]
.

(38)

In this case, the local optimum conditions on
vaccination control u1(s) depend on 3 cases:

(a) Ψ1 ≤ c1S + c′2: then
∂J

∂u1(s)
≥ 0 and

J(u1(s)) is minimized when u1(s) = 0.
(b) c1S + c′2 ≤ Ψ1 ≤ c1S + c′2 + c′3: in this case,

it is necessary to check whether J(u1mid) <
J(0). Using (37), we obtain

J(u1mid)− J(0+) = δu1mid[c1S + c′2 −Ψ1]

and
J(0+)− J(0) = (c0 − c′0)δ.

So, J(u1mid) < J(0) is equivalent to Ψ1 >
(c0 − c′0)/u1mid + c′2 + c1S. If J(u1mid) −
J(0) < 0 then u1(s) = u1mid is locally opti-
mal, otherwise u1(s) = 0 is locally optimal.

(c) Ψ1 ≥ c1S+c′2+c′3: in this case, it is necessary
to check whether J(u1max) < J(0). From
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(37), we have

J(u1max)−J(0+) = δ[u1max(c′2 −Ψ1)

+c′3(u1max − u1mid)]

and
J(0+)− J(0) = δ(c0 − c′0).

So J(umid) < J(0) is equivalent to Ψ1 >
c1S+ c′2 + c′3(1−u1mid/u1max) + δ(c0− c′0).
If J(u1max)− J(0) < 0 then u1(s) = u1max
is optimal otherwise if J(u1max)− J(0) > 0
then u1(s) = 0 is optimal.

B. Necessary conditions for the optimal control
treatment

To find the necessary conditions for the optimal
control treatment function u2(t), we will perturb
the control u2(s) and calculate the effect on the
cost function. The perturbed control u′2 which
differs from u2 by a small amount on an interval
of length δ is

u′2(s, t) =

{
u2(t) + du2 for s ≤ t ≤ s+ δ,

u2(t) otherwise .
(39)

For this purpose, we define

~x ′(s, t) ≡ (S′(s, t), I ′(s, t), V ′(s, t), T ′(s, t))T ,
(40)

which satisfies the equations:

~x ′(s, 0) = ~x(0),

∂

∂t
~x ′(s, t) ={
A(~x(t))~x ′(s, t) for t < s or t > s+ δ,

A(~x(t))~x ′(s,t)−I ′(s,t)du2~∆20 for s≤ t≤s+δ,

(41)

where −→
∆20 ≡ (0,−1, 0, 1)T . (42)

System (41) corresponds to system (10) with
perturbed control u′2(s, t) on the interval s ≤ t ≤
s+ δ.
Note that ~x′(s, t) = ~x(t) for t ≤ s since ~x′(s, 0) =
~x(0) and ~x′(s, t) and ~x(t) satisfy the same differ-
ential equation on [0, s]. In order to compute the

new cost associated with the perturbed solution
x′(s, t) with controls u′2(s, t) and u1(t), we need
to solve (20) for x′(s, t). Since equations (20) have
different forms on the intervals s < t < s+ δ and
t > s+ δ, we will solve for x′(s, t) on these two
intervals separately.
For s ≤ t ≤ s+ δ, we define :

(∆2S(s, t),∆2I(s, t),∆2V (s, t),∆2T (s, t)) ≡
1

b
[S(t)−S′(s, t), I(t)−I ′(s, t), V (t)−V ′(s, t),

T (t)− T ′(s, t)],
(43)

where b ≡ I(s)du2δ.
The following notation will be also used:

~∆2(s,t)≡(∆2S(s,t),∆2I(s,t),∆2V(s,t),∆2T(s,t))
T .

(44)
Note that ~∆2(s, s) = ~0.

Following the same arguments used from (25)
to (30), to first order for s < t < s+ δ, we obtain

∂~∆2(s, t)

∂t
= Ã(~x(t))~∆2(s, t) +

1

δ

−→
∆20, (45)

and for t > s+ δ

∂~∆2(s, t)

∂t
= Ã(~x(t))~∆2(s, t). (46)

To lowest order in b, the solution of (45) gives

~∆2(s, s+ δ) ≈ ~∆20, (47)

and ~∆2(s, t) is solution to

∂~∆2(s, t)

∂t
= Ã(~x(t))~∆2(s, t) +

1

δ
~∆20

for t ∈ (s, s+ δ),

∂ ~∆2(s, t)

∂t
= Ã(~x(t))~∆2(s, t)

for t ∈ [0, s] ∪ [s+ δ,∞).

By the same argument which has been used for
(34) and (35), we have the series of equations (48)-
(50), where b ≡ I(s)du2δ in (50).
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J =

∫ s

0

[
[c0 + c1u1(t)S(t) + c′2u1(t) + c′3(u1 − u1mid)+] + [d0 + (d1u2(t) + d2)I(t)]

]
dt

+

∫ s+δ

s

[
[c0 + c1u1(t)S(t) + c′2u1(t) + c′3(u1 − u1mid)+] + [d0 + (d1u2(t) + d2)I(t)]

]
dt

+

∫ tf

s+δ

[
[c0 + c1u1(t)S(t) + c′2u1(t) + c′3(u1 − u1mid)+] + [d0 + (d1u2(t) + d2)I(t)]

]
dt+ I(tf );

(48)

J ′ =

∫ s

0

[
[c0 + c1u1(t)S(t) + c′2u1(t) + c′3(u1 − u1mid)+] + [d0 + d1u2(t)I(t) + d2I(t)]

]
dt

+

∫ s+δ

s

[
[c0 + c1u1(t)S

′(s, t) + c′2u1(t) + c′3(u1 − u1mid)+] + [d0 + d1(u2(t) + du2)I
′(s, t)

+ d2I
′(s, t)]

]
dt+

∫ tf

s+δ

[
[c0 + c1u1(t)S

′(s, t) + c′2u1(t) + c′3(u1 − u1mid)+] + [d0 + d1u2(t)I
′(s, t)

+ d2I
′(s, t)]

]
dt+ I ′(s, tf );

(49)

J ′ − J
du2

=

∫ s+δ

s

[
−S(s)δ (c1u1(t)∆2S(s, t) + [d1u2(t) + d2]∆2I(s, t)) + d1I

′(s, t)
]
dt

− I(s)δ

[∫ tf

s+δ
[(d1u2(t) + d2)∆2I(s, t) + c1u1(t)∆2S(s, t)]dt+ ∆2I(s, tf )

]
.

(50)

Taking limits as before, we obtain

1

δ

∂J

∂u2(s)
= I(s)(d1 −Ψ2), (51)

where

Ψ2≡
∫ tf

s

[
(d1u2(t)+d2)∆2I(s,t) + c1u1(t)∆2S(s,t)

]
dt

−∆2I(s, tf ). (52)

For this case, there is no effect from the control
u2(s) on

∂J

∂u2(s)
·

The local optimum conditions on u2(s) depends
3 cases:

(a) d1 > Ψ2 =⇒ ∂J
∂u2(s)

> 0, then J(u2(s)) is
minimized when u2(s) = 0,

(b) d1 = Ψ2 =⇒ ∂J
∂u2(s)

= 0, then u2(s) has no
effect on J(u2(s)),

(c) d1 < Ψ2 =⇒ ∂J
∂u2(s)

< 0, then J(u2(s)) is
minimized at u2 when u2(s) = u2max.

C. Summary of necessary conditions for optimal
controls

The following theorem summarizes the result of
the previous discussion:

Theorem 5.1: Suppose u∗1 and u∗2 are locally
optimal controls for the system (6) with objective
function (11),where c0 > c′0 and d0 > d′0. Let us
consider Ψ1(s) and Ψ2(s) given by the expressions
(38) and (52) respectively.
Then
(a) If Ψ1(s) < 0 or S(s) = 0 then u1(s) = 0 is

locally optimal,
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(b) If c1S + c′2 ≤ Ψ1 ≤ c1S + c′2 + c′3 and Ψ1 >
(c0− c′0)/u1mid+ c1S+ c′2 and S(s) > 0 then
u∗1(s) = u1mid is locally optimal,

(c) If c1S + c′2 ≤ Ψ1 ≤ c1S + c′2 + c′3 and Ψ1 <
(c0 − c′0)/u1mid + c1S + c′2 then u∗1(s) = 0 is
locally optimal,

(d) If Ψ1 ≥ c1S + c′2 + c′3 and Ψ1 > c1S + c′2 +
c′3(1−u1mid/u1max)+δ(c0−c′0) and S(s) > 0
then u∗1(s) = u∗1max is locally optimal,

(e) If Ψ1 ≥ c1S + c′2 + c′3 and Ψ1 < c1S + c′2 +
c′3(1−u1mid/u1max)+δ(c0−c′0) then u∗1(s) =
0 is locally optimal,

(f) If Ψ2 < d1 or I(s) = 0 then u∗2(s) = 0 is
locally optimal,

(g) If Ψ2 > d1 or I(s) > 0 and Ψ2 >
(d0−d′0)
I(s)u2max

+

d1 then u∗2(s) = u2max is locally optimal,
(h) If Ψ2 > d1 or I(s) > 0 and Ψ2 = (d0−d′0)

I(s)u2max
+

d1 then u∗2(s) = 0 or u∗2(s) = u2max is locally
optimal,

(i) If Ψ2 > d1, I(s) > 0 and Ψ2 <
(d0−d′0)
I(s)u2max

+d1
then u∗2(s) = 0 is locally opimal,

(j) If I(s) = 0 then the value of u2(s) has no
effect on the solution to system (6) or on the
value of J .

Corollary 5.1: For the system (6) with objec-
tive function (11), given any locally optimal con-
trol (u∗1, u

∗
2), then for any 0 ≤ s ≤ tf , we have

u∗1 ∈ {0, u1mid, u1max}

and
u∗2 ∈ {0, u2max} .

Proof: Follows immediately from Theorem
5.1.

Corollary 5.1 implies that at any given time
instant, there are only 6 possible optimal control
pairs. So, given that an optimal control is constant
on a specified set N of intervals, then there are
6N of possible optimal controls. This fact is based
to the discussion in the next section.

VI. EFFICIENT NUMERICAL METHOD FOR

FINDING NEAR-OPTIMAL CONTROLS

Theorem 5.1 gives conditions for local optimal-
ity, which does not necessary imply global opti-
mality. Many algorithms employ a process which

converges to a locally optimal solution given a
starting point. If the starting point is close enough
to a globally optimal solution, these algorithms
will converge to a global optimum. Thus, it is
important to identify near-optimal solutions. One
way on doing this is to find optimal solutions from
a large class of controls that are representative of
the different possibilities.

First, consider the class of control strategies that
are constant in intervals of length T/N where T is
the total time of the system and N is a positive in-
teger. We also consider strategies that are restricted
to the optimal values specified in Theorem 5.1.
Then there are 6N strategies of which meet these
conditions. If N is small enough, the best solution
from this class can be found by simply evaluating
the cost for all 6N strategies. This limits on the
size of N for practical computation. In order to
increase N , we may make further assumptions.
We expect the vaccination level u1mid to occur
as the system is transitioning from no control to
full control. In order to reduce computation time,
we consider only the two extreme vaccination
strategies: 0, u1max. This leads to 4N strategies
that are constant on the N intervals. On each
interval 0 ≤ k ≤ N − 1, there are four strategy
options:

(u1k, u2k) =

{(0, 0), (u1max, 0), (0, u2max), (u1max, u2max)}.

These options may be indexed as follows:

(u1k, u2k)∈(0, 0) ⇐⇒ aN−k−1=0,

(u1k, u2k)=(u1max, 0) ⇐⇒ aN−k−1=1,

(u1k, u2k)=(0, u2max) ⇐⇒ aN−k−1=2,

(u1k, u2k)=(u1max, u2max) ⇐⇒ aN−k−1=3,

where aN−k−1 is the index of the control on inter-
val k with k = 0, · · · , N−1. Then (a0, · · · , aN−1)
completely specifies the control. We associate this
control with the index

aN−k−14
N−k−1 + aN−k−24

N−k−2 + · · ·+ a0.

Schematically, we have the Figure 2. For more
explanation of the numerical method used, we
consider the flowchart in Figure 3.
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Figure 2. Strategies computed on kth interval.

Figure 3. Algorithm’s flowchart to find near-optimal strategy

An enumerative algorithm for finding a near-
optimal strategy from among these strategies pro-
ceeds as follows: Algorithm 1 calculates the opti-

Algorithm 1 Calculation of optimal piecewise
constant control strategy part I.

1: N = number of intervals
2: Cbest = 1E100
3: for j in 0, · · · , 4N − 1 do
4: Generate strategy Sj = (a

(j)
0 , · · · , a(j)N−1)

associated with index j
5: Evaluate Cj = cost of strategy Sj
6: if Cj < Cbest then
7: Cbest ← Cj
8: Sbest ← Sj
9: end if

10: end for
11: return Cbest, Sbest

mal piece-wise constant control strategy by com-
puting the costs of all 4N possible strategies.
This is computationally expensive. It is possible to
greatly reduce costs by reusing cost computations
between strategies as follows. Suppose S1 and
S2 are two strategies which agree on the first
k intervals. This means that the cost contribu-
tions from first k intervals are the same for both
strategies. If these interval costs are known for
S1, then it is not necessary to recompute them
for S2. Thus in the calculation for S2, it is only
necessary to compute the costs from the last N−k
intervals. It may be shown that on average, only 2
intervals’ costs must be recomputed, instead of N
intervals as in Algorithm 1. It follows that the total
amount of computation required is reduced by a
multiplicative factor of 2/N . A pseudo-code for
the improved algorithm is shown in Algorithm 2.

After part I, we consider on flowchart part
II.a, where the intervals are divided in half to
obtain 2N intervals. As shown in Figure 4, we
keep the u20, · · · , u2N−1 the same. We recompute
u′10, · · · , u′12N−1 by evaluating the 2N strategies
and choosing the optimum. The resulting strategy
has vaccination constant on 22N intervals and
treatment constant on N intervals.

We denote the best vaccination strategy
obtained from the previous procedure by
(u∗10, . . . , u

∗
12N−1). After this, the next step shown
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Algorithm 2 Improved version of Algorithm 1.
1: N = number of intervals
2: j = 0

3: Generate strategy S0 = (a
(0)
0 , · · · , a(0)N−1)

4: Compute cost for each interval
C0(0), · · · , C0(N − 1)

5: Cbest = C0(0) + · · ·+ C0(N − 1)
6: Sbest = S0
7: for j = 1, · · · , 4N − 1 do
8: Compute largest ` such that a(j)` 6= a

(j−1)
`

9: Cj(0) = Cj(k), k = 0 . . . `− 1
10: Recompute Cj(`), · · · , Cj(N − 1)
11: if

∑
Cj(k) < Cbest then

12: Cbest ←
∑
Cj

13: Sbest ← (a
(j)
0 , · · · , a(j)N−1)

14: end if
15: end for
16: return Cbest, Sbest

Figure 4. Schema of flowchart part II.a.

in flowchart part II.b is to divide the intervals
of constant treatment in half and recompute
u′20, · · · , u′22N−1 keeping the vaccination control
u∗10, · · · , u∗12N−1 fixed.

The resulting strategy is represented in Figure 5.

Figure 5. Schema of flowchart part II.b.

At the end of part II, the resulting strategy is
constant on 2N intervals of equal length. So in
part III, the purpose is to improve the solution
by adjusting the sizes of active treatment and

vaccination intervals. Each iteration of this part III
changes each active treatment or vaccination inter-
val by at most 1. Also, this part III works by con-
sidering all strategies that agree with the previous
best strategy except at the endpoints of the active
treatment or vaccination intervals. Figures 6 and
7 show how different vaccination and treatment
controls are tried which differ from the previous
best solution only where active treatment intervals
begin or end. Note that the dashed line in Figures 6
and 7 represents the previous optimal vaccination
and previous optimal treatment respectively.

Part III of the flowchart Figure 3 has the fol-
lowing pseudocode:

Algorithm 3 Pseudocode for Part III of algorithm.

1: S0 = (a
(0)
0 , · · · , a(0)T/dt−1) is the previous best

strategy
2: Identify change points in vaccination strategy.
N1 = number of change points.

3: j = 0
4: time steps before and after changes =N1

5: Identify change points in treatment strategy.
N2 = number of change points

6: compute the costs on all 2N intervals for pre-
vious optimal strategy C0(0), · · · , C0(2N−1)

7: Sbest = S0
8: for j = 1, · · · , 3N12N2 − 1 do do
9: Compute next candidate strategy Snew =

a
(j)
1 , . . . a

(j)
T/dt

10: Compute the first ` such that a(j)` 6= a
(j−1)
`

11: Cj(0) = Cj(k), k = 0 . . . `− 1
12: Recompute Cj(`), · · · , Cj(N − 1)
13:

∑
Cj(k)← Cnew

14: if
∑
Cj(k) < Cbest then

15: Cbest ← Cnew
16: Sbest ← Snew
17: end if
18: end for
19: return Cbest, Sbest
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Figure 6. Vaccination strategy modification in stage III of algorithm.

Figure 7. Treatment strategy modification in stage III of algorithm.

VII. NUMERICAL SIMULATIONS AND

DISCUSSION

A. Numerical simulations

In this section, we use this algorithm described
in Section VI to solve the control problem given
by Equations (11),(12) and (16). Table I, shows
the baseline parameters for our simulations. In
our analysis, we used the baseline configuration
described in Table I and varied one cost parameter

at a time. Figures 8 - 14 show the results for
the parameters c0, c1, c2, d0, d1, d2 and z respec-
tively. In each set of three sub-figures, the first
two sub-figures give the optimal vaccination and
treatment controls found by the algorithm. For
all solutions found by the algorithm, local opti-
mality was numerically verified. The third sub-
figure shows the process of convergence during
the algorithm. In each graph, the thin solid line
shows the default configuration, and the other two
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Table I
BASELINE PARAMETERS USED IN SIMULATION

Parameters Interpretation Values units Source
c1 Cost coefficient of u1S 10 dimensionless assumed
c2 Cost coefficient of u2

1 105 dimensionless assumed
d1 Cost coefficient of u2I 40 dimensionless assumed
d2 Cost coefficient of I 5 dimensionless assumed
z Final cost coefficient of I 50 dimensionless assumed
c′2 Approximative constant of c2 when 0 < u1 ≤ u1mid 0 dimensionless assumed
c′3 Approximative constant of c2 when u1 ≤ u1mid ≤ u1max 0 dimensionless assumed

nCint Number of intervals on which control is constant 3 dimensionless assumed
β Disease transmission coefficient 8× 10−5 day−1 assumed
γ Recovery rate 0.65 ∈ [0.25, 1.5] day−1 [42]
ε Small rate infection of vaccinated individuals 0.0001 day−1 assumed
µ rate of replacement including both birth/death and immigration/emigration 0.004 day−1 [41]

u1max Maximum population rate for vaccination 0.05 day−1 assumed
u2max Maximum population rate for treatment 0.1 day−1 assumed
tf Final time 100 days assumed
dt Time increment 0.1 day assumed
N Population size 10000 humans assumed

lines give configurations with different values of
the chosen parameter. The labels I.a, II.a, b and
III on each third subfigure correspond to different
parts of the algorithm described in the flowchart
in Figure 3.

B. Discussion

Figures 8, (9) and (10) show that increasing
c0, c1 or c2 (which are fixed cost of vaccination
and cost per vaccination respectively) reduces the
active vaccination interval and increases the active
treatment interval. For Figures (10) shows that no
matter how much the quadratic vaccination cost
c2 is increased, the vaccination time interval is
reduced while the active treatment time interval
is increasing until to a certain maximum level less
than 20 . Figure 11 shows that increasing the value
of d0, increases a little the vaccination interval,
while the treatment interval decreases to zero. In
Figure 12, when the value of d1 is increased, it
follows that the vaccination interval is increased
slightly while the treatment interval decreases.
Figure 13 shows that no matter how much d2 is
increased, both vaccination and treatment intervals
don’t change much. Figure 14 shows that by
increasing the value of z, the vaccination interval
increases a little while the treatment interval is
reduced.

The rightmost sub-figure in each set of figures
shows the rates of convergence, and the costs of
the solutions found by the algorithm. The algo-
rithm takes 3 to 20 iterations to converge, and
increasing any cost parameter produces increased
final cost. Typically initial large decreases in cost
which represents the cost improvement from Al-
gorithm I followed by Algorithm IIa. Usually little
improvement iteration of part III modify each
treatment or vaccination interval by stimulating
variable reduction in the cost. The algorithm some
times III brings rapid improvement followed by
slower. During the rapid phase, both controls are
being adjusted. The rapid improvement phase ends
when one control has reached its optimal configu-
ration and the control continues to adjust. In most
cases, execution time to compute each optimal
control was a minute or less on an Intel R©Core(TM)

i3-2328M CPU at 2.20GHz, 2200 MHz, 2 cores,
4 logical processors with 4G RAM .

CONCLUSIONS

In this paper, we introduced an SIS epidemic
model under vaccination and treatment controls.
We formulated an objective function and simpli-
fied it for numerical computations: the simplified
objective function can configured to give an upper
bound, lower bound, or best estimate for the cost.
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Figure 8. Optimal vaccination, treatment controls and strategy cost for different values of c0.

Figure 9. Optimal vaccination, treatment controls and strategy cost for different values of c1.

We determined necessary conditions for optimal
control treatment and necessary conditions for
optimal control vaccination with simplified cost
function. We established an algorithm to optimize

the strategy cost. This algorithm has been im-
proved to reduce the execution time to find the
best strategy cost. We also verified that the final
strategy obtained by the algorithm in simulation
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Figure 10. Optimal vaccination, treatment controls and strategy cost for different values of c2.

Figure 11. Optimal vaccination, treatment controls and strategy cost for different values of d0.

satisfies the local optimum conditions given in
Theorem 5.1 . Although, this does not guarantee
global optimality, the fact that we have tried a large
diversity of strategies in the algorithm makes it

plausible that the final strategy is indeed the global
optimum. Finally, some numerical simulations are
presented to illustrate the performance of this
algorithm.
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Figure 12. Optimal vaccination, treatment controls and strategy cost for different values of d1.

Figure 13. Optimal vaccination, treatment controls and strategy cost for different values of d2.
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Figure 14. Optimal vaccination, treatment controls and strategy cost for different values of z.
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