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Abstract—The author constructs a mathematical
model capturing tumor-immune dynamics, incor-
porating the evolution of drug resistance, PKPD
(pharmacokinetics and pharmacodynamics) of ad-
ministered drugs, and immunotherapy possibilities.
Numerical simulations are performed to analyze the
model under a variety of treatment possibilities. A
sensitivity analysis is performed to determine the
parameters contributing the most to the variance in
effector cell, resistant, and sensitive tumor cell pop-
ulations. Then, a detailed optimal control analysis
is performed, along with a numerical simulation of
optimal treatment profiles for a hypothetical patient.
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I. INTRODUCTION

Mathematical modeling has the potential to sig-
nificantly impact the treatment of cancer through
optimization of drug administration schedules.
Currently, clinical treatments are administered in

an ad hoc way, modifying the treatment along the
way, after observing how the patient is responding
to it. Since it is not possible to clinically test
all possibilities for drug dosage, combinations,
sequence, timing, and duration for a patient, math-
ematical modeling is able to help determine the
optimal treatment profile for each patient, leading
to truly personalized cancer treatment [Rockne et
al. 2019].

In recent years, immunotherapy has become a
viable and promising treatment option for cancer
patients. This biological treatment focuses on us-
ing the immune system to fight cancerous cells.
Though the immune system can naturally pre-
vent/slow cancer growth, cancer cells have evolved
many ways to bypass the body’s immune system
such as having genetic mutations which make
them harder to detect by the immune system,
having surface proteins which deactivate immune
cells, and changing the healthy cells surrounding
the tumor so that they interfere with the immune
response to cancer. Immunotherapies elicit or am-
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plify the immune response in these cases to fight
against the cancer more effectively in many ways.
For example, immune checkpoint inhibitors block
immune checkpoints, leading to a stronger immune
response, adoptive cell therapy boosts the natural
ability of T cells to fight against cancerous ones,
and monoclonal antibodies help the immune cells
recognize cancerous cells more accurately [Kruger
et al. 2019].

Chemotherapy is another common cancer treat-
ment plan. Like immunotherapy, there are many
drugs with different mechanisms chemotherapy
subsumes including doxorubicin, novantrone, and
epirubicin. Each of these drugs targets and at-
tempts to kill cells which are growing and di-
viding rapidly, like those characteristic of cancer.
However, a marked side effect of this is that the
drug also kills many healthy cells in the process,
especially those fast-growing cells in the bone
marrow, hair, and skin [Schirrmacher 2019].

Current medical literature is focused on attempt-
ing to combine these two treatments. Though much
work has been done in this area, the question still
remains: what is the best way to combine these
treatments to ensure tumor remission while also
attempting to minimize side effects?

This paper attempts to address this question in
a few ways. In section 2, a mathematical model
capturing the key components of our system is
presented. In section 3, parameter value estimates
will be provided and simulations with varying
amounts of continuous infusion chemotherapy will
be presented. In section 4, a sensitivity analy-
sis will be performed, allowing us to understand
which parameter values impact the variance in the
effector cell and tumor cell populations the most.
In section 5, the author analyzes the existence and
characterization of the optimal control. In section
6, numerical simulations depicting the optimal
control profile under different treatment side effect
combinations for a hypothetical patient will be
provided.

II. MODEL CREATION

The model presented below can be thought of
to consist of two parts: the first three equations de-

scribe tumor-immune interactions. Separate equa-
tions are given for sensitive and resistant (to the
chemotherapy drug) tumor cells, and a term is pro-
vided which converts the sensitive cells to resistant
cells. For greatest generality, immunotherapy is
included by adding to the effector cell population.
The last two equations form the second part of
the model, capturing the pharmacokinetics and
pharmacodynamics of chemotherapy drug admin-
istration. This component is linked to the first set
of equations via the effect of the chemotherapy
drug on the sensitive tumor cell population. Below
is our model:

dS

dt
=aS

(
1− TT

Cmax

)
−qES−S

(
Cγ2

Cγ2 +wIC50

)
−lS − dTS (1)

dR

dt
=aR(1− TT

Cmax
)−qER+lS−dTR (2)

dE

dt
=s+pE

TT
g + TT

−mETT−µEC1−dEE

+s2v(t) (3)

dC1

dt
=−(k1+k2)C1+

s1u(t)

V1
(4)

dC2

dt
=k12

V1
V2
C1−k2C2 (5)

The terms u(t) and v(t) are termed controls
for our treatment: u(t) refers to the chemotherapy
treatment, and v(t) refers to the immunotherapy
treatment.

In this model, S and R represent the drug-
sensitive and drug-resistant tumor cells, TT rep-
resents the total number of tumor cells (S + R),
E represents the effector cells, and C1 and C2

represent the drug concentrations in the plasma
and at the tumor site, respectively. Below, we
will explain the functional forms of each of the
equations above:
dS/dt: the first term represents the normal

dynamics of these cells, taking into account the
carrying capacity (captured by Cmax). The second
term captures the killing rate of tumor cells by
effector cells. The third term is the killing of
sensitive tumor cells by the drug; IC50 is the

Biomath 9 (2020), 2002137, http://dx.doi.org/10.11145/j.biomath.2020.02.137 Page 2 of 12

http://dx.doi.org/10.11145/j.biomath.2020.02.137


Anuraag Bukkuri, Optimal control analysis of combined chemotherapy-immunotherapy treatment ...

median inhibitory concentration, and w scales
between the measurements in vitro to in vivo
(we can assume this is 1); γ is provided to help
scale the hyperbolic curve for PKPD data fitting
purposes. The fourth term is used to incorporate
drug resistance–l represents the mutation rate from
sensitive to resistant tumor cells. Finally, the last
term captures the natural death rate of the cancer
cells.
dR/dt: The first, second, and last terms serve

the same purpose as in the dS/dt equation. The lS
captures the transferal of sensitive to resistant cells
via mutation. Note that we assume identical base
growth dynamics for the sensitive and resistant
cells, as well as identical interactions with effector
cells.
dE/dt: The first term is the rate of influx of

effector cells into the region of tumor localization
and the second term captures the tumor activation
of effector cells while ensuring a maximum rate
at which effector cells are produced and dE is
their death rate. The third term is the death of
effector cells due to interaction with the tumor
cells. The fourth term is added to incorporate drug
toxicity. Finally, the last term, s2v(t), captures the
administration of the immunotherapy treatment,
in which v(t) is the input function ranging from
0 to 1 and s2 is a scaling term. Since each
immunotherapy treatment mechanistically works
differently, the generalization made here is that the
immunotherapy effectively increases the number
of effector cells at the tumor site.
dC1/dt: Here, k1 is the elimination from the

plasma, and k2 is the elimination from the effect
compartment. u is the input function (ranging
from 0 to 1) for administration protocol of the
chemotherapy treatment (with s1 serving as a
scaling factor) and V1 is the volume of distribution
of the compartment.
dC2/dt: k12 is the link process between the

plasma component and the tumor, V1 and k2 are
as above, V2 is the effect component for C2(t).
Together, these last two equations incorporate the
pharmacokinetic components of drug administra-
tion.

III. IMPACTS OF CONTINUOUS INFUSION OF

CHEMOTHERAPY

The parameter values used in model simulations
are given in Table I.

The most standard clinical treatment for cancer
is chemotherapy administration. As such, in this
section, numerical simulations are performed for
various chemotherapy treatment situations. Initial
conditions of 300 effector cells and 10,000 sensi-
tive cancer cells and an s1 value of 100 were used
for all simulations below. Three simulations were
performed for varying intensities of chemotherapy
treatment. The results can be seen in Figure 1.

Fig. 1. Chemotherapy Numerical Simulations
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Parameter Meaning Estimated Value Source

a Natural Growth Rate of Cancer Cells 0.616/day dePillis
Cmax Carrying Capacity of Cancer Cells 9.804 ∗ 108cells dePillis
q Killing Rate of Cancer Cells by Effector Cells 1.101 ∗ 10−7/cell ∗ day Lai estimation
w Scaling Between In Vitro and In Vivio 1 Assumption

IC50 Median Drug Inhibitory Concentration 10 Depends on drug
γ Hyperbolic Curve Modification 1 N/A
l Conversion Rate of Sensitive to Resistant Cancer Cells 10−9 Birkhead
dT Natural Death Rate of Cancer Cells 0.17/day Liao; Lai
dE Natural Death Rate of Effector Cells 0.0412/day Kuznetsov
s Effector Cells at Tumor Site 1.3 ∗ 105cells/day Kuznetsov
p Tumor Activation of Effector Cells 0.1245/day Kuznetsov
g Maximum Rate of Effector Cell Production 2.019 ∗ 107cells Kuznetsov
m Death of Effector Cells due to Cancer Cells 3.422 ∗ 10−10/cell ∗ day Kuznetsov
µ Side Effect of Chemotherapy on Effector Cells 2 ∗ 10−2 liters/g*day Estimation
k1 Elimination from Plasma 1.6/day Iliadis
k2 Link Process between Plasma and Tumor 0.8/day Iliadis
u Input function for Chemotherapy Protocol Depends on control N/A
v Input function for Immunotherapy Protocol Depends on control N/A
V1 Volume of the Plasma Compartment 25 Iliadis
V2 Volume of the Tumor Compartment 15 Iliadis
k12 Link Process between Plasma and Tumor Compartments 0.4/day Iliadis

TABLE I
PARAMETERS USED IN NUMERICAL SIMULATIONS

In this figure, the top panel corresponds to a u
value of 0.2, or 20% of the maximal chemotherapy
administration possible. The middle panel repre-
sents 50% and the bottom panel is 100%. There
are a few things to notice in these figures. First,
consider the key similarity: in all three treatment
scenarios, the effector cell population reached the
same equilibrium of 4 ∗ 106 cells at similar times.
Note that, in these simulations, a low side effect
of the chemotherapy drug on the immune system
was assumed. The critical differences lie in the
populations of sensitive and resistant cells. We see
a common trend in that the higher the dose of
chemotherapy, the faster the sensitive cancer cell
population goes extinct, but the larger the final
equilibrium of resistant cancer cells is.

Since, in this model, we are dealing with a
rapidly evolving cancer cell population, regardless
of the intensity of continuous infusion chemother-
apy, resistance is ensured to occur, without com-
plete remission of the cancer. Thus, to more rig-
orously determine which aspects of the cancer to

attack, a sensitivity analysis was performed.

IV. SENSITIVITY ANALYSIS

A sensitivity analysis was performed on the
above ODE model using the Sobol-Martinez
method. Parameters which cannot be modified
with treatments were given a range 10% higher
and 10% lower than the original value used in
the original numerical simulations. The Sobol-
Martinez method is based on variance decomposi-
tion techniques to provide a rigorous measure of
the contributions of the input to output variance.
The algorithm outlined by Zhang et al. was imple-
mented for the sensitivity analysis given in Figures
2, 3 and 4.

The images on the left are the first order Sobol
indices: the contribution to the output variance by
the single model input alone. The second image
is the total Sobol index, one which measures
the contribution to the output variance caused by
a model input, including the first-order effects
as well as all higher-order interactions. As one
can see, in the case of the effector cells, the
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Fig. 2. Sensitivity Analysis: Effector Cells

Fig. 3. Sensitivity Analysis: Resistant Cancer Cells

most sensitive parameter value for the first 50 or
so time steps is s, a quantity that is increased
by immunotherapy treatments such as dendritic
cell therapy. However, after that time, until 400
time steps, the µ parameter (side effects of the
drug) is just as sensitive, if not more sensitive.
Since the side effects of immunotherapy do not
directly impact the effector cells usually, this can

be interpreted as the side effects of chemotherapy
impacting the effector cells even more than the po-
tential benefits of the immunotherapy. Medically,
from the effector cell side, it would seem that
the best way to progress would be to give a high
dose of dendritic cell therapy, for example, at the
beginning, then work to limit the side effects of
other chemotherapy drugs that are given.

In the case of the resistant cells, one can see
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Fig. 4. Sensitivity Analysis: Sensitive Cancer Cells

that all three parameter values shown are quite
sensitive. Considering the total Sobol index, it
seems that, for most of the time, a (growth rate
of the cancer) and q (killing rate of tumor by
effector cells) switch off between being the most
and second most sensitive parameter values, while
the mutation rate (l) becomes more important,
relative to the other parameters, as time progresses.
This implies that, for the resistant cells, it might
be most effective to alternate some treatment that
directly reduces the cancer’s ability to grow and
immunotherapy for the first 200 time steps, and
then just give immunotherapy for the last 200
time steps. However, it’s hard to directly reduce
natural tumor growth rate using a drug. There
is, though, a burgeoning area of medical research
focused on the elimination of the Tudor-SN pro-
tein from cancer cells using CRISPR-Cas9 gene
editing techniques. It is known that Tudor-SN is
the main influencer of cancer cell growth and thus,
silencing this protein would suppress the rapid
cellular proliferation characteristic of cancers. A
recent study showed that when Tudor-SN was
removed from human cells, the levels of several
microRNAs increase, putting brakes on genes that
encourage cell growth. This significantly slowed
down cell progression from the preparatory to cell

division phase [Elbarbary 2017]. As suggested by
the sensitivity analysis of the resistant cancer cell
output values, using such a treatment based on
the suppression of Tudor-SN in conjunction with
immunotherapy would be the most effective treat-
ment to reduce the resistant tumor cell population.

For the sensitive cells, it’s clear that, at the
beginning 50 time steps, a is the most sensitive
parameter. This then quickly switches to q being
the most important parameter, with the IC50 value
of the drug becoming more sensitive as time pro-
gresses. Medically, this implies that it’s best to give
immunotherapy throughout the treatment, while
introducing increasing amounts of chemotherapy
over time.

Thus, overall, it seems that the parameters a,
q, s, and l are the parameters that impact the
dynamics the most. Medically, it then makes
sense to target these parameter values. Though
it is often not possible to target all of these
parameters in a treatment plan, our analysis sug-
gests the plausibility of a combined chemotherapy-
immunotherapy treatment plan. So, to deter-
mine what the best combination and timing of
chemotherapy-immunotherapy administered proto-
cols are, we perform an optimal control analysis.
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V. OPTIMAL CONTROL

Here, we formulate the problem of determining
the most effective treatment regimen as an optimal
control one. Specifically, we desire to minimize
the amount of drug given and the tumor size over
a fixed therapy interval [0,T] while maximizing
the number of effector cells, thus maintaining
an effective tumor-immune balance as done in
[Bukkuri 2019]. Drug toxicity is accounted for by
the u(t) term in the integral, denoting the total drug
dosage over the given treatment period as a penalty
term.

We choose as our control class piecewise con-
tinuous functions defined for all t such that
0 ≤ u(t) ≤ 1 where u(t)= 1 represents max-
imal chemotherapy and u(t)= 0 represents no
chemotherapy. Thus, we depict the class of ad-
missible controls as

U1(t) = u(t) piecewise continuous s.t.
0 ≤ u(t) ≤ 1,∀t ∈ [0, T ] U2(t) = u(t), v(t)

piecewise continuous s.t.
0 ≤ u(t), v(t) ≤ 1,∀t ∈ [0, T ]

Now, we define our objective functional and
optimal control problem. We specifically consider
two cases: one treatment (J1) with just chemother-
apy and another treatment (J2) with a combined
chemotherapy-immunotherapy (e.g. dendritic cell
therapy) regimen.

For a fixed therapy horizon [0,T], maximize the
objective functional

J1(u)=

∫ T

0
αE(t)−β1S(t))−β2R(t)−Bu(t))dt

J2(u,v)=

∫ T

0
αE(t)−β1S(t))−β2R(t)

−B1u(t)−B2v(t))dt

over all Lebesgue-measurable functions u :
[0, T ] → [0, umax] subject to the above ODE
dynamics and initial conditions.

Theorem 1: Consider the objective functional
J1(u) subject to the state system in section 2.
Assume that:
• there exists an admissible pair ( ~K,u(t))

• N( ~K,U1,t) is convex in U1 for each ( ~K,t)
• U1 is closed and bounded
• ∃ a number θ s.t. || ~K|| ≤ θ∀t ∈ [t0, t1] and

all admissible pairs ( ~K,u(t))

Then there exists an optimal control pair
( ~K∗, v∗) that maximizes J1(u). Moreover, for suf-
ficiently small T, the optimal control system has a
unique solution.

Proof. An admissible pair ( ~K, v(t)) is needed
for the existence of optimal control. Since the
system in equations (1) – (5) (our original set of
equations) has bounded coefficients and any solu-
tions are bounded on the finite time interval, using
a result from Lukes [Lukes 1982], we obtain the
existence of the solution of the system described
by equations (1) – (5). Now, we need N( ~K,U1,t)
to be convex in U1 for each ( ~K,t). We define:

w1=(αE − β1S − β2R−Bu1 + γ1,

aS

(
1− TT
Cmax

)
−nES−S

(
Cγ2

Cγ2+wIC50

)
−lS−dTS,

aR

(
1− TT

Cmax

)
− nER+ lS − dTR,

s+ pE
TT

g + TT
−mETT − µEC1 − dEE,

− (k1 + k2)C1 +
s1u1
V1

,

k12
V1
V2
C1 − k2C2)

for some γ1 ≤ 0 and u1 ∈ U1,

w2=(αE − β1S − β2R−Bu2 + γ2,

aS

(
1− TT
Cmax

)
−nES−S

(
Cγ2

Cγ2+wIC50

)
−lS−dTS,

aR

(
1− TT

Cmax

)
− nER+ lS − dTR,

s+ pE
TT

g + TT
−mETT − µEC1 − dEE,

− (k1 + k2)C1 +
s1u2
V1

,

k12
V1
V2
C1 − k2C2)

for some γ2 ≤ 0 and u2 ∈ U1. We must now prove
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that for every λ ∈ [0, 1] we have

w3 = λw1 + (1− λ)w2 ∈ N( ~K,U1, t).

To do this, let

z1=λ(αE − β1S − β2R−Bu1 + γ1)

+ (1− λ)(αE − β1S − β2R−Bu2 + γ2)

= αE − β1S − β2R−B((1− λ)u2 + λu1)

+ λγ1 + (1− λ)γ2

and define

γ3 = z1 − (αE − β1S − β2R) +Bu3

for
u3 = (1− λ)u2 + λu1.

Then, γ3 = λγ1+(1−λ)γ2 ≤ 0, since γ1, γ2 ≤ 0
and λ ∈ [0, 1]. Then, we see that

z2=λ

(
aS

(
1− TT

Cmax

)
−nES−S

(
Cγ2

Cγ2 + wIC50

)
− lS − dTS

)
+ (1− λ)

(
aS

(
1− TT

Cmax

)
− nES

−S
(

Cγ2
Cγ2 + wIC50

)
− lS − dTS

)

=aS

(
1− TT
Cmax

)
−nES−S

(
Cγ2

Cγ2+wIC50

)
−lS−dTS

z3=λ(aR(1−
TT
Cmax

)− nER+ lS − dTR)

+ (1−λ)
(
aR

(
1− TT

Cmax

)
−nER+lS− dTR

)
= aR

(
1− TT

Cmax

)
− nER+ lS − dTR

z4=λ

(
s+pE

TT
g+TT

−mETT−µEC1−dEE
)

+(1−λ)
(
s+pE

TT
g+TT

−mETT−µEC1− dEE
)

= s+ pE
TT

g + TT
−mETT − µEC1 − dEE

z5=λ

(
−(k1 + k2)C1 +

s1u1
V1

)
+ (1− λ)

(
−(k1 + k2)C1 +

s1u2
V1

)
= −(k1 + k2)C1 +

s1u3
V1

z6=λ

(
k12

V1
V2
C1 − k2C2

)
+(1− λ)

(
k12

V1
V2
C1 − k2C2

))
= k12

V1
V2
C1 − k2C2

Combining this information, we find a v3 ∈
[0, 1] and γ3 ≤ 0 such that

λw1 + (1− λ)w2 =(
αE − β1S − β2R−Bu3 + γ3,

aS

(
1− TT
Cmax

)
−nES−S

(
Cγ2

Cγ2+wIC50

)
−lS−dTS,

aR

(
1− TT

Cmax

)
− nER+ lS − dTR,

s+ pE
TT

g + TT
−mETT − µEC1 − dEE,

−(k1 + k2)C1 +
s1u3
V1

,

k12
V1
V2
C1 − k2C2

)
Therefore, λw1 + (1 − λ)w2 ∈ N( ~K,U1, t).

Thus, N( ~K,U1, t) is convex in U1.
The next requirement for the existence of opti-

mal control is that U is closed and bounded. This
is true, by definition. Finally, there exists a number
θ s.t. || ~K|| ≤ θ∀t ∈ [t0, t1] and all admissible pairs
( ~K,u(t)). The boundedness argument is analogous
to those previously performed [Fister et al. 1998,
Burden et al. 2004, Fister et al. 2005].

A similar argument can be applied for the
existence of an optimal control for J2(u, v).

For the analysis, we shall continue with the
J2(u, v) objective so that the proofs are more
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insightful. Note that J1 is identical to the J2
objective, but with a zero v term.

Since we’ve proven the existence of optimal
controls to maximize the J1 and J2 functionals,
first order necessary conditions for optimality can
be determined by a version of the Pontryagin
maximum principle. For the characterization of the
optimal control, we first define the Hamiltonian
associated with J2(u, v) and the system of ODEs
as follows:

H=αE − β1S − β2R−B1u

+λ1

(
aS

(
1− TT

Cmax

)
−nES−S

(
Cγ2

Cγ2 +wIC50

)
− lS−dTS

)
+λ2

(
aR

(
1− TT

Cmax

)
−nER+lS−dTR

)
+λ3

(
s+pE

TT
g+TT

−mETT−µEC1−dEE

+s2v(t)
)

+ λ4

(
−(k1 + k2)C1 +

s1u(t)

V1

)
+ λ5

(
k12

V1
V2
C1 − k2C2

)
The existence of an optimal control for the state

system given in section 2 associated with the ob-
jective J1(u) can be determined from the Filippov-
Cesari theorem. For the theorem, the following
notation shall be used:

~K =


S
R
E
C1

C2


and

N( ~K,U1, t)=(
αE(t)−β1S(t)−β2R(t)−B1u(t)−B2v(t)+φ,

aS

(
1− TT

Cmax

)
−nES−S

(
Cγ2

Cγ2 +wIC50

)
− lS − dTS,

aR(1− TT
Cmax

)− nER+ lS − dTR,

s+ pE
TT

g + TT
−mETT − µEC1 − dEE,

− (k1 + k2)C1 +
s1u(t)

V1
,

k12
V1
V2
C1 − k2C2

)
where φ ≤ 0 and u ∈ U1.

Regarding the uniqueness of the controls, simi-
lar proofs are given in [Burden et al. 2004, Fister
et al. 1998]. The additional constraint that T must
be small is due to the fact that the state system is
moving forward in time while the adjoint system
is moving backwards.

Theorem 2: Given optimal controls u∗ and v∗

and solutions of the corresponding state system,
there exist adjoint variables λi for i = 1,2,3,4,5
satisfying the following:

dλ1
dt

= −∂H
∂S

dλ2
dt

= −∂H
∂R

dλ3
dt

= −∂H
∂E

dλ4
dt

= − ∂H
∂C1

dλ5
dt

= − ∂H
∂C2

where λi(T ) = 0 for i=1,2,3,4,5 by the PMP
transversality condition. Furthermore, from the
optimality condition, u∗ is given by:{

0, if s1λ4

V1
−B1 < 0

1, if s1λ4

V1
−B1 > 0

while v∗ is similarly given by:{
0, if s2λ3 −B2 < 0
1, if s2λ3 −B2 > 0

Proof. From the Hamiltonian, the derivatives of
the adjoints were calculated, and the following is
seen. u∗ is given by:

0, if s1λ4

V1
−B1 < 0

1, if s1λ4

V1
−B1 > 0

singular, if s1λ4

V1
−B1 = 0
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while v∗ is similarly given by:
0, if s2λ3 −B2 < 0
1, if s2λ3 −B2 > 0
singular, if s2λ3 −B2 = 0

To determine the representation of the control,
we first prove that both controls are bang-bang via
proof by elimination. If both controls are singular
on [0,T] and take time derivatives, then λ3(t) = 0
and λ4(t) = 0 on [0,T] due to the continuity of
λ3(t) and λ4(t). This is a contradiction of the fact
that λ3 = B2

s2
and λ4 = B1V1

s1
since we’re assuming

the presence of a tumor and some side effects of
the drug. Thus, it’s not possible for both controls
to be singular.

Now, let’s analyze the possibility of one of the
controls being singular. For simplicity, we will
work with the v∗ control, but the same argument
applies to the u∗ control. If the v∗ control is sin-
gular, λ3 = B2

s2
on [0,T]. Taking a time derivative

of s2λ3 − B2 = 0, we get s2λ′3(t) = 0, implying
that λ′3 = 0 and that λ3(t) is constant. However,
since λ3(t) is continuous on [0,T] and λ3(T ) = 0
by the transversality condition, then λ3(t) = 0 for
any subset on [0,T]; however, again, λ3 = B2

s2
,

a nonzero quantity for any meaningful therapy.
Thus, we conclude that both controls must be
bang-bang.

Note that this agrees with current medical
knowledge that chemotherapy is best given in
bang-bang controls and hence why chemotherapy
is given in cycles: a dose of one or more drugs fol-
lowed by several days or weeks without treatment.
This ensures that the normal cells have enough
time to recover from the drug side effects. A
similar argument can be given for immunotherapy,
though the side effects are less direct than those
for chemotherapy

Intuitively, this makes sense since it’s stating
that no treatment will be used when the V1 is
high (i.e. essentially that the tumor/normal com-
partment ratio is high) and the maximum effect of
the drug is low compared to the patient’s treatment
tolerance level. On the other hand, if the patient
can tolerate great side effects, the tumor size

is large, and there exists a high drug efficacy,
maximum treatment should be given.

VI. SIMULATED PATIENTS

We can think of our optimality system as a two-
point boundary value problem, which we solve
using a fourth-order iterative Runge-Kutta scheme,
as done in [Jung et al. 2002]. In this scheme, we
perform a forward sweep of the state equations
with initial guesses for u and v, before performing
a backward calculation using the adjoint equation
and an update of the controls. This method is done
iteratively until convergence is obtained.

Below are simulations of a few hypothetical
patients. We specifically analyze the cases of low
and high side effects for chemotherapy and im-
munotherapy. The weighting terms in the objective
functional were fixed at α = 0.03, b1 = 0.5, and
b2 = 0.6. s1 was fixed at 100 and s2 was fixed at
100,000.

The table below shows the values of B1 and
B2 used to represent high and low side effects for
chemotherapy and immunotherapy:

Side Effect Chemotherapy (B1) Immunotherapy (B2)

Low 1000 10,000
High 1,000,000 100,000,000

TABLE II
B1 AND B2 VALUES USED

In Figure 5 depictions of all four possible com-
binations of side effects for chemotherapy and
immunotherapy over 700 days are presented.

Note that, in accordance with clinical oncol-
ogy practices, the optimal controls in all side
effect scenarios include bang-bang controls for
both chemotherapy and immunotherapy.

The key differences in optimal control protocols
occur in the first 400 days of treatment. In the
case of low side effects for both chemotherapy and
immunotherapy, it is advised that chemotherapy be
delivered for the first 150 days and immunother-
apy be delivered for the last 380 days. This is in
stark contrast to the other three scenarios, in which
chemotherapy and immunotherapy treatments do
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Fig. 5. Numerical Simulations of Optimal Control Profiles
for a Hypothetical Patient

not overlap for the first 400 days. For example,
consider low side effects for chemotherapy and
high side effects for immunotherapy. In this case,
chemotherapy should be prescribed for the first
150 days and immunotherapy should be given for
the next 250 days. When chemotherapy has high
side effects for the patient, it is effectively removed
from the optimal treatment plan (for the first 400
days). Instead immunotherapy is given for the last
380 days (if it has a low side effect) or the last 250
days (if it has a high side effect). Past day 400,
optimal treatment protocols in all four cases are
to give 70 days of chemotherapy followed by 70
days of a drug vacation and to also give 70 days
of immunotherapy followed by 70 days of a drug
vacation–note that these two treatments overlap
and are often given together.

VII. CONCLUSION

In this paper, a model was created capturing
dynamics among tumor cells sensitive and resistant
to chemotherapy, effector cells, and chemotherapy
PKPD. Evolution of resistance to chemotherapy
was taken into count. Parameter values were esti-
mated from medical literature and numerical simu-
lations were performed displaying dynamics under
control and treatment cases. Then, Sobol-Martinez
sensitivity analyses were performed which found
the growth rate of cancer cells, killing of cancer
cells by the immune system, effector cells in the
tumor compartment, and the resistance emergence
in cancer cells to be the parameters which impact
the dynamics of effector cells, sensitive tumor
cells, and resistant tumor cells the most. Next,
a characterization of the optimal treatment pro-
file was given analytically, along with proofs for
the existence and uniqueness of such a protocol.
Numerical optimal control was then performed
to illustrate the optimal treatment schedule for a
hypothetical cancer patient. This showed a profile
of bang-bang chemotherapy and immunotherapy
controls, often with overlapping treatment regi-
mens. The author hopes that the model and anal-
ysis will help inspire further medical research
to be conducted in creating drugs which reduce
the natural growth rate of cancer cells, as well
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as the clinical use of combined chemotherapy-
immunotherapy treatments in accordance with the
optimal protocols presented.
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