Formation of square lattices in coupled pattern-forming systems

Christopher Strickland, Daniel A. Pearson, Patrick D. Shipman


A wide variety of natural and labo-ratory systems can produce patterns of ripples, hexagons, or squares. The formation of stable square patterns from partial differential equation models requires specific cubic nonlinearities involving higher-order derivatives. Motivated by plant phyllotaxis, we demonstrate that the coupling of more than one pattern-forming system can produce square patterns without these special nonlinearities.


pattern formation; phyllotaxis; nanoscale structures

Full Text:




  • There are currently no refbacks.

BIOMATH is indexed in Mathematical Reviews (MathSciNet), Zentralblatt fuer Mathemathik (zbMATH), EBSCO databasis Academic (Complete, Alite, Premier, Ultimate).

 ISSN: 1314-684X (print), 1314-7218 (online)