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Abstract—We present a general epidemic model t0  \/agABLES AND KEY MODEL PARAMETERS (j, k € {1,...n})

describe the spread of an infectious disease in several

regions connected by transportation. We take into account S 1
that infected individuals not only carry the disease to a e
new place while traveling from one region to another, but .
transmit the disease during travel as well. We obtain that Sk.jr Vkyjs

susceptible, infected, recovered, all
R;, Nj individuals in regionj

susceptible, infected, recovered, all

a model structured by travel time is equivalent to a large Tk,jy Mok, individuals during travel from regio to j

system of differential equations with multiple delays. By A;j incidence in regiory

showing the local Lipschitz property of the dynamically e incidence during travel from regioh to j

deflned delayed feeQback function, we obtain existence and a recovery rate of infected individuals in regign

uniqueness of solutions of the system. , . ;

Q. j recovery rate during travel from regidnto j

Kgywordse_pidemic spre_ad; t_ranspor_tati_on model; dy- L travel rate from regiory to regionk

namically defined delay; Lipschitz continuity .y duration of travel from regiotk to j

. INTRODUCTION

We consider an arbitrary number of regions which
are connected by transportation, and present an SIR .
based model which describes the spread of infectiB'™M ©Of any vector € R™ for m € Z. In order to
in the regions and also during travel between therfPtain the general existence and uniqueness result for the

- - . 3 - -
We show that our model is equivalent to a system §yStem, we prove that : C — R*" satisfies the local
functional differential equations Lipschitz condition on each bounded subsetCofthat

is, for everyM > 0 there exists a constalf = K (M)
2 (t) = F(xy), (1) such that the inequalityF(¢) — F(v)| < K||¢ — ||

holds for everyg, ) € C with ) <M.
wheret € R, t > 0 andz : R —» R3”, We use the nota- Yo v 1l 1

tion z; € C, z+(0) = xz(t + 0) for § € [—0,0], where for ~ The paper is organised as follows. In Section 2 we
o > 0, we define our phase space= C([—a,0],R3") as introduce our model, then we obtain the compact form
the Banach space of continuous functions frpaw, 0] of the system in Section 3. Section 4 concerns with the
to R3", equipped with the usual supremum nofm||. proof of the local Lipschitz condition for various types
In the sequel we use the notati¢w] for the Euclidean of incidence (new cases per unit of time).
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[I. MODEL DESCRIPTION disease transmission in regignyj € {1,...n}:

p

We formulate a dynamical model describing the 5i(t) = =A;() = <Z W’“) 55(t)
spread of an infectious disease sinregions and also n k=t
during travel from one region to another. Divide the +23k,j(7k,j§t_7'k,j);
entire populations of the: regions into the disjoint el
classesS;, I;, R;, j € {1,...n}, whereS;(t) I;(t), ‘ n
R;(t), j € {1,...n} denote the number of susceptible, Li(t) = Aj(-) — (Z Mch) I;(t)

k=1

infected and recovered individuals at timhén region ;. (L;)
J

rl:gtr;t?oentotal population in region at timet, we use the It + Z s (Tt — ),
| k:ln
Nj(t) = S5(t) + I;(t) + R, (). R;(t) = ail;(t) — (; xw) R;(t)
n
The incidence in region j; is denoted by + ;T’f’j(m’j;t ~ Tkj):

A;(S;(t), 1;(t), R;(t)), model parametet; represents

the recovery rate of infected individuals in regigpnwe For eachj,k € {1,...n} and for eactt,, the following
denote the travel rate from regignto regionk by 5.k system Tk,j) describes the evolution of the densities
and we sefu; ; =0 for j,k € {1,...n}. duri_ng the travel from regio#k to region; which started
Let sk, ir; 7r; denote susceptible, infected andt timet.:

recovered travelers, where lower index-p&jk,;},

J.k € {1,...n} indicates that individuals are traveling d )=
from region k to region j. Let 7,; > 0 denote the @S’“j(u’ be) = =),

time required to complete the travel from regiénto d . .

regionj(,1 which is assSmed to be fixed. To degcribe the | ks (Ute) = Mg (1) = gt (Ui te), (T
disease dynamlcs during trave!, for eachwe define e () = g gin (i),

skj(usty), ik j(usty), rij(usty), g,k € {1,...n} as the du

densities of individuals with respect to who started For sake of simplicity, in systemsL{) and (I} ;) we
travel at timet. and belong to classes; ;, i, rx;, use the notations\;(-) and \; ;(-) for the incidences,
where u € [0,7 ;] denotes the time elapsed sincevhere these functions are meant to be evaluated at
the beginning of the travel. Thesy (7 ;;t — 7 ;), the appropriate points. For = 0, the densities are
ik (Thjit — Thj)s Thj(Thyj3t — Thj) €Xpress the inflow determined by the rates individuals start their travels
of individuals arriving from regionk to compartments from regionk to region; at timet,. Hence, the initial

Sj, 1, R; at timet, respectively. Let values for systemT(, ;) atu = 0 are given by
Sk, (03 tx) = p,5Sk (L),
Mg j (s ) = Sk (w3 b)) 4 i (w3 ) + 7 (us £ in,j (05 84) = pe, Ik (L), (IVT,;)

Tk, (05 ts) = g j Ry (ts).

denote the total density of individuals during travel fromlotice thatu;; = 0 for j € {1,...n} implies that
regionk to j, wherej, k € {1,...n}. The total density for eacht,, it holds thats;;(u;t.) = 4;,;(u;ts) =

is constant during travel, i.ew, j(u;t.) = ny ;(0,t,) for r;;(u;t.) = 0, as there is no travel from region to

all v € [0, 7 ;]. During the course of travel from regionitself. Since travel from regio to regionj takesry ;

k10 7, M j(skj(us te), ik (us i), mi j(u; t)) represents units of time to complete, we need to assure that there
the incidence, and let;, ; denote the recovery rate.  exists a unique solution of syste(f, ;) on [0, 7 ;] (see

All variables and model parameters are listed in TableRropositior TV1).

Based on the assumptions formulated above, we obt&low we turn our attention to the termg ; (75 j; t—7% ;).

the following system of differential equations for they ;(7y it — 7k ), 'k (Tk 5t — Thj), 5,k € {1,...n} in
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system (;), which give the inflow of individuals arriving For ¢ € Cy;, we use the notationjy_, (u) =
to classesS;, I;, R; at timet, upon completing a travel y(u, 0; hy, j(¢(—7% ;))). Furthermore we defindV,
from region k. At time ¢, these terms are determined’; — R3" as

by the solution of system(Tt, ;) at u = 7, ; with initial Wold) = (4 X T
values (V1 ;) for t, =t — 7, ;, since individuals who £(9) = (Do) (T1): -+ Do(ri) (Thn)) -

left region k& with rate pu;; at timet — 7, ; will enter  Letx(t) = (Si(t), I1(t), Ri(t), ... Sn(t), I, (t), Ru(t))”
region ;j at timet. fort > 0,andf = (fs1, fr1, frRas - fsns frns fRR)T,
Next we specify initial values for systenif) att = 0. where forj ¢ {1,...n},

Since fork € {1,...n}, travel from regionk to region n

Jj takest ; units of time to complete, arrivals to region ¢ () — _A (7. . A . ,

j at time are determined by the state of the classes (’)ffg’] (#) = ~ A2, @3-, 735) (; MM) T
regionk att — 7y ;, via the solution of systeniy, ;) and Fri(x) = Ay
initial values (V'T} ;). Thus, we set up initial values as "’ ’

n
follows: — (Z uj,k> T3j—1,
k=1
S;j(0) = ¢s,(0), n
1;(0) = ¢1,(0), (IVLj)  frj(z) = ajzsj—1 — (Z Mj,k) 35.
R;(0) = ¢r,;(0), k=1
whered € [—7,0] for 7 := max; ye1,. .0} Tk,j,» MOreover
vsj, ¢r; and pg ; are continuous functions foj €
{1,...n}.
n
/ o .
[1l. THE COMPACT FORM OF THE SYSTEM v (t) = faz(t)) + ZWk(xt) =t F(x), 3)
k=1
For eachj,k € {1,...n} andt. > 0, we define
y(u) =y (u) = (snj(uits), ing(usts), reg(u;ta))” i
andg = gi.; = (gs,9r,9r)", wherey : [0,7,;] » &S, where 7z Cy — R™ and forp € Cy, ¢ =
g:R3 > R3 and (815 P11, PR1s - - s PSs PLns PR)” -

T3j—2,T35—1, 963j) — QX351

Clearly the union of systemd.;) with initial conditions
(IVLj), j € {1,...n} can be written in a closed form
as

o = @,

gS(y) = _/\kJ <y17 Y2, y3>7
9r(y) = Mej (Y1, y2,y3) — kY2,
Ir(Y) = agjya.

IV. THE LOCAL LIPSCHITZPROPERTY

This section is devoted to the proof of the general
existence and uniqueness result of systeim (3). First, we

Then for eachy, k andt,, system obtain the following simple result.
y'(u) = g(y(u)), Proposition IV.1. Assume that)\; ; possesses the lo-
(0) = yo @) cal Lipschitz property on each bounded subset of

R3. Moreover, assume thak ;(qi,q2,¢3) > 0 and
is a compact form of systemT} ;) with initial \; ;(0,¢2,¢93) = 0 hold for ¢i, 2,43 > 0. Then there

values (IVT} ;) for yo = (ux,;Sk(t), mrjlr(ts), exists a unique solution of syste (2) which continuously
pr iR (t)T. Let y(u,0;y0) denote the solution of depends on the initial data, and fare [0, 7] andyy > 0
system|[(R) at time: with initial value yj. the following inequality holds componentwise:

The feasible phase space is the nonnegative ¢one

C([—,0],R3") of the Banach space of continuous func- 0< y(u, 0:0) < V3gol.

tions from[—7,0] to R3" with the sup norm. For every Proof: The local Lipschitz condition guarantees
j,k € {1,...n}, let hy; : R3 — R3 be defined by the existence of a unique solution which continuously
hij = (hskjs hrkg, hris)", where depends on the initial data (see Picard-Litide¢heorem

in Chapter Il, Theorem 1.1 and Chapter V, Theorem 2.1
in [1]). We have also seen that ;(u;t.) is constant
A, (V) = bk jU3K-1, for all u in the maximal interval of existence, moreover
hr i ;(V) = g jU3k- from the nonnegativity condition ok, ; it follows that

hs g j(v) = pr,jv3k—2,
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nonnegative initial data give rise to nonnegative solutioit. holds that|¢(—7 )|, [¢(—7% ;)] < M. Since solu-

Hence we obtain tions of [2) can be expressed g$u,0;y0) = yo +
0 < iy (0i8) = (18, Jo 9(y(r,0; o)) dr, we have
— sm(w*) +z;”(u t*) +7“k:](u ti) () = | (B(—Tr5)) +/ 9(Gp(—r, y(r)) dr
= ik (Sk(t) + In(t.) + R(t.), 0
0 < sk, (us ) iy (w3 t), Ty (w5 1) - (hk,j(¢(—7k,j)) +/ 9(Gp(—r, (1)) dT)‘
< g i (Sk(te) + Iin(ts) + Ri(t)), 0
S #g (Sulle) + Ll8) + Falt)) < Py (D=r1)) = b =r2) ©
where we usedIV'T} ;). Using the definition ofy, (4) LI X
implies that the inequality / |9(Gp(—r., = 9@y (=n,,) ()] dr
h
0 < (y(u,0;%0)),, (¥(u, 0350)) 5, (¥(u, 0;90)) < Ky jllo — 4|
< (yo)1 + (yo)2 + (v0)3 +/ K Go(=r ) (1) = Gp—r, ()] dr
o ’ "
< \/5\/((90)1)2 + ((90)2)” + ((w0)3)” for u € [0, 7]. Define
holds foru € [0, 00), whereyy = ((yO)la (%0)2, (90)3)T D(u) = ‘%(—m.j)(u) - %(—m)(“)}

is the initial value and we used the arithmetic-quadratjc .
mean inequality. We conclude that the solution exists i?\r u € [0,7]. Then [§) gives
[0,7] and is bounded. [ N g [
Now we prove that if we assume that; and A ; P(u) < K jllo =4l +Kk,j/0 L(r)dr,
possess the local Lipschitz property, then is also

. . . 'S ity we hav
locally Lipschitz continuous. and from Gronwall’s inequality we have

h _ K} ju
Lemma IV.2. Let us suppose that for allj,k € (u) < K 5ll6 = vlle ' ()
{1,...n}, A;j and \; ; possess the local Lipschitz prop-Applying the definition ofiV,, we arrive to the inequal-
erty, Ax;(q1,4q2,93) > 0 and A ;(0,¢2,43) = 0 hold ity

for q1,q2,q3 > 0. ThenF satisfies the local Lipschitz |(Wi(9)); = (Wi(¥));]
condition on each bounded subset(f. — |y¢ (cre ) (o) — Do v)(Tkj)|
Proof: We claim that for everyM > 0 there < K ef5ama | — )|,

exists a constank’ = K (M) such that the inequality 1 (e e used6) at = 7,
- ’.7'
|7(¢) — F(4)| < Kl|¢ — || holds for everys,» € C1.  y ig spraightforward thatW, has the Lipschitz con-

with |}, [[9]] < M. _ dition for anyk € {1,...n}, K™r = KWr(M) =
Fix indices j,k € {1,...n}. For||¢|| < M it holds

Th.j 2 . . .
componentwise thal < ¢ (-7 ;) < M, so due to the \/Zy 1 (K je'iam2)" s a suitable choice for the
continuity of 7, ;, there exists a constaif! (1) such LIPSChitz constant o _
that 0 < hy (¥(—7s)) < th is satisfied component- Finally, t.he assumpthn th_atj is Llp_schlt_z contln_uogs
wise. Foryo = hy (i (—7x.,)) Proposmor-. V1 implies for any j € {1J,£...n} }mplles th(;:] L|p§ch|:]z_ continuity
that there exists dy. ; = Ji j(L} ;) = Ji.;(M) such that o:‘: §’03n0 tlr?(; Is(et{_ é(R(SZ\f) be| t<ej\;}l,ps'|(fhgﬁ ?OCJrnztnant
the inequality|gy_, ) (u)| < J;” holds foru € [0, 7] v U= : y

(for instance we can ChOOSEg th = d)(O)‘, ‘¢(0)|7 |¢(_T)’7 WJ(_TN < M
N hold and thus

The local Lipschitz property ofy foIIows from its

definition. We assumed that,; is Lipschitz contin- [ (®) = F(¥)| < |f(¢(0)) — f(2(0))]

uous, this implies the Lipschitz continuity of. Let i

Ky, = K ;(M) be the Lipschitz constant df; ; on + 2 [Wi(@) = Wi(®)
the set{v € ' R3n lv] < M}, we denote the Lipschitz "
constant ofg = g ; on the set{v € R3: |v| < Ji;} by < Kf|!¢ — ||+ ZKWkW) —9]|.

K ; = Kj;(J) = K ;(M). For any||g]], [[¢|| < M, =1
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q192 p1ip2
Ai(p) — Ai(aq)| = B -
[A1(p) (@) Q1 +q2+q3 D1+ D2+ D3
— 6 4192 _ q1p2 4 q1p2
a+aet+aeg at+tqetag gt+ae+gs
_ qip2 4 q1p2 _ q1p2
qQqu+p2+q3 q+p2+q3 q+p2+p3
q1p2 _ q1p2 + q1p2 _ pip2
qQu+p2+p3s pr+p2+p3s pL+p2+p3s p1+p2+ps
q1492 q1p2
< b < -
Q+aq+q q+q+qs
q1p2 _ q1p2 q1p2 _ q1p2
QA+aq+q q+p2+gs qQ+p2+qs q+p2+p3 (7)
q1P2 _ q1p2 q1p2 _ p1p2 >
qQ+p2+p3 p1+p2+Dp3 p1+p2+p3s p1+p2+p3
q1 q1p2
251<QQ102 — |+ P2 — @
| | @1+ q+q3 | | (@1 + g2+ q3)(q1 +p2 + g3)
qi1p2
+1p3 — g3
| | (q1 +p2 + q3)(q1 + p2 + p3)
q1p2 D2
+Ip1 —q1 + |1 — D1 )
| | (q1 + p2 + p3)(p1 + p2 + p3) | | p1+p2+p3

< B1(2|lg2 — p2| + |p3 — q3| + 2|p1 — a1])
<551lq - p|

HenceK/ + 37, \/E | (E] eKisma)? is a suit- - Theorem IV.3. With the incidenced; and ), ; defined
able choice forK, the Llpschltz constant of for the in (8), there exists a unique solutlon of systém (3).
set{y € Cy - [[yl| < M}. - Proof: Recall Theorem 3.7 from_[2]:

The  assumptions of Lemma [ 1¥.2 on - . .
the incidences A (S, (1), I; (1), R, (1)) and Suppose thatF satisfies the local Lipschitz property

_ 3n
N (sp5(us ), iy (us ).y (s t.)) can be fulfileq On ©ach bounded subset @f. = Cy([-7, 0], R3Y),

by several choices on the type of disease transm|SS|0'??O“':‘0Ver letM > 0. There existsA > 0, depending

For instance, let3; > 0 be the transmission rate mth nly ?hnM suc:l that if¢ & Crtsat:fsfles||¢t||0< Mf
region j and let 5ij > 0 denote the transmissiont1c" HEre EXISIS a unique solutierit) = (¢,0;¢) 0

rates during travel. Forj,k € {1,...n} and for ®. 1@f|?$d;ﬂ—7’,A]. n (?qdltlonli/llfils the Lipschitz
a= (q1,0, 03) € R?, define constant forF corresponding to M, then

q . ) KA
Aj(q) = B —————qo, max |z(n,0;¢) — z(n,0; )| < |[¢ — e
i) =5, Ot+ata” —TsnsA
q1
Mej(@) = =8 ————qo. holds for||¢|], < M.
ki) = 0w o1l 11l <
This implies thatA; and A ; have t;e form We showed in Lemma V|2 that the local Lipschitz
j tinuity of F foll from the local Lipschit t
A;(S;,1;,R;) = _@jNJ I, continuity of F follows from the local Lipschitz property

@) of the incidences and the nonnegativity condition\pf;.
The latter condition clearly holds, hence it is sufficient
to prove that the incidences defined jij (8) possess the

which is called standard incidence. Now we prove tHecal Lipschitz property.

following existence-unigueness theorem. As one may observe, the definition of the-s and),, ;-

)\k,](skjvllk]aTij> ﬁk

j
’nJ
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s (j,k € {1,...n}) only differ in a constant multiplier, V. CONCLUSION
hence it is sufficent to prove the local Lipschitz property
only for one of them, i.e. forA\;. Moreover, we prove
this property only on the nonnegative coRéU which
is invariant under system§](3) arld (2). Rarq € R?,

The topic of epidemic spread of infectious diseases via
transportation networks has recently been examined in
several studies (seel [3I,/[4]./[5].][6].][7]), although these
) . J B works mostly consider only two connected regions. We
bi/e (zev:;etr?;):?lonr ?ne Ll')pSCh'éz 'ﬁﬁéﬁh&w j whelre introduced a dynamic model which describes the spread
wedu ¥,0,¢> 0,1 atbtc < of an infectious disease in and betweenegions which
[ | .
are connected by transportation. We used the commonly
Remark 1. It follows from the proof of Theore.@/sapplied SIR model as a basic epidemic building block
that the incidenced ; and \; ; defined in[(B) also satisfy in the regions and also during the travel. The model
the global Lipschitz property, meaning that the Lipschifermulation led to a system structured by travel time,
constantk arises independently df/. In this case, the Which turned out to be equivalent to a system of differen-
solution of systen] [3) exists ¢fy o). tial equations with multiple dynamically defined delays.
We showed that under local Lipschitz conditions on the
Wfection terms within the regions and during travel, the
usual existence and uniqueness results hold.
Recent epidemics like the 2002-2003 SARS outbreak
and the 2009 pandemic influenza A(H1N1) highlighted
- the importance of the global air travel network in the
Akg(@) = =B 0102, study of epidemic spread. During long distance travel
. , , .__such as intercontinental flights, a single infected indi-
which leads to the mass action-type disease transmlssmrd . .
vidual may infect several other passengers during the
thereforeA; and \; ; have the form : : . .
J flight, and since the progress of these diseases is fast,

Another natural choice for the incidences can be t
following: for q = (q1,92,¢3) € R3 and for j k €
{1,...n}, let

Aj(q) = —Biq1ge,

Ai(S;, I;, R) = —3;8;1; even a short delay (a fraction of a day) arising due to
] I+t +Yv) — I~3+0 . . . . .

, g , (9) transportation may play a significant role in the disease
Mg (St Thgs Thj) = — B jShjh- dynamics. In this paper we illustrated by proving an

existence and uniqueness result that such epidemiologi-
cal situations can be studied in the framework of delay
differential equations.

Theorem 1V.4. With incidences\; and )\ ; defined in
(9). there exists a unique solution of systémn (3).

Proof: Similarly as by Theoreri V|3, it is enough
to show thatA; and \;; satisfy the local Lipschitz ACKNOWLEDGMENT
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