Effects of morphological and functional heterogeneities on the intracellular Ca^{2+} signals in coupled pancreatic β -cells

<u>G. J. Félix-Martínez</u>¹, I. Morales-Reyes¹, J. R. Godínez-Fernández¹ Department of Electrical Engineering, Universidad Autónoma Metropolitana, México City, México, gjfelix2005@gmail.com

Keywords: Islets of Langerhans. β -cells. Gap junctions. Ca^{2+} transients.

The Islets of Langerhans are mainly composed of insulin-secreting pancreatic β -cells, glucagon-secreting α -cells and somatostatin-secreting δ -cells[1]. At the cellular level, secretion of these hormones takes place through a common mechanism involving glucose metabolism, electrical activity and Ca²⁺-handling[2]. In addition, pancreatic hormone secretion is regulated by intra-islet interactions including paracrine and autocrine signals, as well as electrical coupling mediated by gap junctions between β -cells[3].

Electrical coupling between β -cells has been previously studied both theoretically and experimentally. In these studies, it was shown that β -cell coupling is essential for the synchronized release of insulin[1]. In addition, it was demonstrated that the lack of functional gap junctions leads to impaired pulsatile insulin secretion due to uncoordinated Ca²⁺ oscillations[4].

In this work we used a computational model to assess the effect of morphological and functional heterogeneities in the islet β -cells (including differences in cell sizes, β -cell interconnectivity and electrophysiological and Ca²⁺ buffering properties) on the Ca²⁺ signal produced in the cytosol, ultimately related to the secretory response of the islet β -cells.

References

- [1] Farnsworth NL, Benninger RKP. New insights into the role of connexins in pancreatic islet function and diabetes. FEBS letters 2014; 588:127887.
- [2] Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P. Hierarchy of the beta-cell signals controlling insulin secretion. Eur J Clin Invest 2003; 33:74250.
- [3] Rutter GA, Hodson DJ. Minireview: Intraislet Regulation of Insulin Secretion in Humans. Molecular Endocrinology 2013; 27:198495.
- [4] Head, W. Steven, et al. Connexin-36 gap junctions regulate in vivo firstand second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes 61.7 (2012): 1700-1707.