
Articles Biomath Communications 4 (2017)

Biomath Communications

www.biomathforum.org/biomath/index.php/conference

A Note on the New Activation Function

of Gompertz Type

Anton Iliev1,2, Nikolay Kyurkchiev1,2, Svetoslav Markov2

1 Faculty of Mathematics and Informatics, University of Plovdiv
Paisii Hilendarski, Plovdiv, Bulgaria

aii@uni-plovdiv.bg, nkyurk@uni-plovdiv.bg
2 Institute of Mathematics and Informatics, Bulgarian Academy of

Sciences, Sofia, Bulgaria
smarkov@bio.bas.bg

Abstract In this note we construct a family of parametric Gom-
pertz activation function (PGAF) based on hyperbolic tangent func-
tion.

We prove upper and lower estimates for the Hausdorff approxima-
tion of the sign function by means of this family.

Some comparisons between the hyperbolic tangent activation func-
tion and the new parametric Gompertz activation function are re-
ported.

Numerical examples, illustrating our results are given.
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1 Introduction

Sigmoidal functions (also known as “activation functions”) find mul-
tiple applications to neural networks [8]–[19], [55].

The modified hyperbolic tangent is a special S-shaped function
constructed on the basis of the hyperbolic tangent function, which is
expressed in terms of the exponent.

We study the distance between the sign function and a special
class of activation functions, so-called parametric Gompertz activation
function (PGAF).

The distance is measured in Hausdorff sense, which is natural in
a situation when a sign function is involved. Precise upper and lower
bounds for the Hausdorff distance are reported.

Any neural net element computes a linear combination of its input
signals, and uses a logistic function to produce the result; often called
“activation” function [20]– [22] .

2 Preliminaries

The following are common examples of activation functions:

a) logistic

ϕ1(t) =
1

1 + e−t
; (1)

b) Parametric Hyperbolic Tangent Activation (PHTA) function

ϕ2(t) =
eβt − e−βt

eβt + e−βt
= 1− 2e−βt

eβt + e−βt
, t ∈ R, β ≥ 1; (2)

c) Parametric Half Hyperbolic Tangent Activation (PHHTA) function

ϕ3(t) =
1− e−βt

1 + e−βt
, t ∈ R, β ≥ 1; (3)



d) Parametric Fibonacci hyperbolic tangent activation function (FHTAF)
[40] based on the Fibonacci hyperbolic tangent function [7]

ϕ4(t) =
Ψβt −Ψ−βt

Ψβt + Ψ−βt
, t ∈ R, β ≥ 1; (4)

where Ψ = 1 + φ = 3+
√
5

2
≈ 2.61 and φ is the ”Golden Section”.

A survey of new mathematical models of Nature is presented based
on the Golden Section and using a class of hyperbolic Fibonacci and
Lucas functions in [6].

e) Parametric Soboleva’ modified hyperbolic tangent activation func-
tion [41] based on Soboleva’ modified hyperbolic tangent function [1]–
[3]

ϕ5(t) = m(t; c, d, c, d) =
ect − e−dt

ect + e−dt
. (5)

The function finds application in approximating the current-voltage
characteristics of light-emitting diodes [4].

In [23] the authors create the binary logistic regression model as
to find the optimal vector β = [β0, β1, . . . , βn] that best fits

y =

{
1, β0 + β1x1 + β2x2 + · · ·+ βnxn + ε > 0

0, otherwise.

Here, ε represents the error.

Evidently, in (1) t can be regarded as a variable, which is a linear
weighted combination of independent variables x = [x1, . . . , xn] as

t← β0 + β1x1 + β2x2 + · · ·+ βnxn.

Thus, the binary logistic model is [23]:

F (x) =
1

1 + e−t(β0+β1x1+β2x2+···+βnxn)
(6)

where F (x) represents the probability of dependent variable y = 1.



Figure 1: Nonlinear, parametrized function with restricted output
range [5].

Training a multilayer perceptron with algorithms employing global
search strategies has been an important research direction in the field
of neural networks.

Multi–layer perceptrons are feed forward neural networks featuring
universal approximation properties used both in regression problems.

The standard feed forward network with only a single hidden layer
can approximate any continuous function uniformly on any compact
set and any measurable function to any desired degree of accuracy
[24]–[27], [5], [51].

For other results, see [56].

The nonlinear, parametrized function with restricted output range
is visualized in Fig.1.

It is straightforward to extend this analysis to networks with mul-
tiple hidden layers.

For recurrent neural networks are typical:



a) stable outputs might be difficult to evaluate;

b) unexpected behavior (chaos, oscillation) might occur.

A survey of neural transfer activation functions can be found in
[28].

Moreover, the nodes in the hidden layer are supposed to have a
sigmoidal activation function which may be one of the following:

a) logistic sigmoid

ϕ1(net) =
1

1 + e−β net
; (7)

b) hyperbolic tangent

ϕ2(net) =
eβ net − e−β net

eβ net + e−β net
(8)

c) half hyperbolic tangent

ϕ3(net) =
1− e−β net

1 + e−β net
(9)

d) Parametric Fibonacci hyperbolic tangent

ϕ4(net) =
Ψβ net −Ψ−β net

Ψβ net + Ψ−β net
(10)

e) Parametric Soboleva’ modified hyperbolic tangent

ϕ5(net) =
ecnet − e−dnet

ecnet + e−dnet
(11)

where net denotes the input to a node and β, c and d are the slope
parameters of the sigmoids.

A family of recurrence generating activation functions based on
Gudermann function [53]

gi+1(t) = 4
π
arctg

(
e
π
2
(t+gi(t))

)
− 1; i = 0, 1, 2, . . . ,

g0(t) = 4
π
arctg

(
e
π
2
t
)
− 1; g0(0) = 0.

is considered in [54].



Definition 1. The sign function of a real number t is defined as fol-
lows:

sgn(t) =


−1, if t < 0,

0, if t = 0,

1, if t > 0.

(12)

Definition 2. [29], [30] The Hausdorff distance (the H–distance) [29]
ρ(f, g) between two interval functions f, g on Ω ⊆ R, is the distance
between their completed graphs F (f) and F (g) considered as closed
subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (13)

where ||.|| is any norm in R2, e. g. the maximum norm ||(t, x)|| =
max{|t|, |x|}; hence the distance between the points A = (tA, xA), B =
(tB, xB) in R2 is ||A−B|| = max(|tA − tB|, |xA − xB|).

In [31]–[36], [40] the authors consider some families of recurrence
generated parametric activation functions on the base of (7)–(11).

Definition 3. The Gompertz function σα,β(t) is defined for α, β > 0
by [42]–[44]:

σα,β(t) = ae−αe
−βt

, (14)

where a is the upper asymptote when time approaches +∞.

Gompertz functions are introduced by Benjamin Gompertz for the
study of his demographic model, which represents a refinement of the
Malthus model.

The functions find applications in modeling tumor growth and in
population aging description.

In biology, the Gompertz curve or Gompertz function is commonly
used to model growth process where the period of increasing growth
is shorter than the period in which growth decreases.

For other results, see [45]–[50], [57].



3 Main Results

It is natural to define the following modified function:

f) New parametric Gompertz activation function (PGAF)

ϕ6(t) =
e−e

−at − e−eat

e−e−at + e−eat
(15)

or

ϕ6(net) =
e−e

−a net − e−ea net

e−e−a net + e−ea net (16)

where net denotes the input to a node and a is the slope parameter of
the sigmoid ϕ6(t).

In this Section we prove upper and lower estimates for the Haus-
dorff approximation of the sign function by means of ϕ6(t).

3.1 Approximation issues

The H-distance d(sgn(t), ϕ6(t)) between the sgn function and the
function ϕ6 satisfies the relation:

ϕ6(d) =
e−e

−ad − e−ead

e−e−ad + e−ead
= 1− d. (17)

The following Theorem gives upper and lower bounds for d

Theorem 3.1. For the Hausdorff distance d between the sgn func-
tion and the function ϕ6 the following inequalities hold for

a >
1

2
e2 − 1

dl =
1

2 (1 + a)
< d <

ln (2 (1 + a))

2 (1 + a)
= dr. (18)



Figure 2: The functions F (d) and G(d) for a = 5.

Proof. We define the functions

F (d) =
e−e

−ad − e−ead

e−e−ad + e−ead
− 1 + d (19)

G(d) = −1 + (1 + a)d. (20)

From the Taylor expansion we find (see Fig. 2)

F (d)−G(d) = O(d3).

In addition G′(d) > 0 and for a > 1
2
e2 − 1

G(dl) < 0; G(dr) > 0.

This completes the proof of the inequalities (18).

Approximations of the sgn(t) by (PGAF)–functions for various a
are visualized on Fig. 3–Fig. 5.



Figure 3: Approximation of the sgn(t) by (PGAF) for a = 4; Hausdorff
distance: d = 0.225754.

Figure 4: Approximation of the sgn(t) by (PGAF) for a = 5; Hausdorff
distance: d = 0.192659.



Figure 5: Approximation of the sgn(t) by (PGAF) for a = 5.83; Haus-
dorff distance: d = 0.172187.

From the graphics it can be seen that the ”saturation” is faster.

Some computational examples using relations (18) are presented
in Table 1.

The last column of Table 1 contains the values of d computed by
solving the nonlinear equation (17).

a dl dr d from (17)
4 0.1 0.230259 0.225754
5 0.083333 0.207076 0.192659

5.83 0.0732064 0.191396 0.172187

Table 1: Bounds for d computed by (18) for various a.

From the above table, it can be seen that the right estimates for
the value of the best Hausdorff distance (see (18)) are quite precise.



Figure 6: Comparison between the activation functions ϕ6(t) (thick)
and ϕ2(t) (dashed) for fixed a = 1.1.

4 Comparison between the activation func-

tions ϕ6(t) and ϕ2(t)

Evidently (see Fig. 9)

ϕ6(t)− ϕ2(t) =
a3t3

6
+O(t4).

Some comparison between the activation functions ϕ6(t) and ϕ2(t)
for various a are visualized on Fig. 6–Fig. 8.

5 Conclusion

Hyperbolic tangent activation functions and their modifications with
adaptive normalization play a useful role in neural network learning
systems.



Figure 7: Comparison between the activation functions ϕ6(t) (thick)
and ϕ2(t) (dashed) for fixed a = 2.

Figure 8: Comparison between the activation functions ϕ6(t) (thick)
and ϕ2(t) (dashed) for fixed a = 5.



Figure 9: ϕ6(t)− ϕ2(t) = a3t3

6
+O(t4).

A family of parametric Gompertz activation function (PGAF) based
on hyperbolic tangent function is introduced in this paper it finds
application in neural network theory and practice.

Theoretical and numerical results on the approximation in Haus-
dorff sense of the sgn function by means of functions belonging to the
family are reported in the paper.

For other results, see [37]–[41].

Some techniques for recurrence generating of families of activation
functions can be found in [52], [54].
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