On the
Kumaraswamy–Dagum–Log–Logistic sigmoid functions with applications to population dynamics

Nikolay Pavlov, Angel Golev, Anton Iliev, Asen Rahnev and
Nikolay Kyurkchiev
Faculty of Mathematics and Informatics
University of Plovdiv Paisii Hilendarski
Tzar Asen Str., 4000 Plovdiv, Bulgaria
nikolayp@uni-plovdiv.bg; angelg@uni-plovdiv.bg;
aii@uni-plovdiv.bg; assen@uni-plovdiv.bg; nkyurk@uni-plovdiv.bg

This article is dedicated to 75th anniversary of
Professor, Sc. D. Svetoslav Markov

Abstract.

The Kumaraswamy–Dagum distribution is a flexible and simple model with applications to income and lifetime data.

We prove upper and lower estimates for the Hausdorff approximation of the shifted Heaviside function $\tilde{h}_{t_0}(t)$ by a class of Kumaraswamy–Dagum–Log–Logistic cumulative distribution function – (KD–CDF). Numerical examples, illustrating our results are given.

Citation: Nikolay Pavlov, Angel Golev, Anton Iliev, Asen Rahnev, Nikolay Kyurkchiev, On the Kumaraswamy–Dagum–Log–Logistic sigmoid functions with applications to population dynamics,
http://dx.doi.org/10.11145/bmc.2018.03.247
Key words: Kumaraswamy–Dagum–Log–Logistic cumulative distribution function – (KD–CDF), shifted Heaviside function, Hausdorff distance, upper and lower bounds

2010 Mathematics Subject Classification: 41A46

1. Introduction. Dagum (1977) motivates his model from the empirical observation that the income elasticity \(\eta(F,t) \) of the cumulative distribution function (CDF) \(F \) of income is a decreasing and bounded function \(F \).

The cumulative distribution function (cdf) of Dagum distribution is given by
\[
G_D(t,\lambda,\beta,\delta) = (1 - \lambda t^{-\delta})^{-\beta},
\]
for \(t \geq 0 \), where \(\lambda \) is a scale parameter; \(\delta \) and \(\beta \) are shape parameters.

The cumulative distribution function (cdf) of Kumuraswamy distribution is given by
\[
G(t) = 1 - (1 - t^\psi)^\phi, \quad t \in (0,1)
\]
for \(\psi > 0 \) and \(\phi > 0 \).

This approach was further developed in a series of papers on generating systems for income distribution [4]–[7].

For other results, see [8], [9], [10].

For an arbitrary (cdf) \(F(t) \) with (PDF) \(f(t) = \frac{dF(t)}{dt} \), the family of Kumaraswamy–G distribution with (cdf) \(G_k(t) \) is given by
\[
G_k(t) = 1 - (1 - F^\psi(t))^\phi,
\]
for \(\psi > 0 \) and \(\phi > 0 \).

By letting \(F(t) = G_D(t) \), we obtain the Kumaraswamy–Dagum (KD) distribution, with (cdf)
\[
G_{KD}(t) = 1 - \left(1 - G_D^\psi(t)\right)^\phi,
\]
i.e.
\[G_{KD}(t) = 1 - \left(1 - \left(1 + \lambda t^{-\delta} \right)^{-\beta} \right)^{\phi}. \] (5)

See [10] for further details.

When \(\beta = 1 \), we obtain Kumaraswamy–Dagum–Log–Logistic cumulative distribution function – (KD–CDF):

\[G_{KD}(t) = 1 - \left(1 - \left(1 + \lambda t^{-\delta} \right)^{-1} \right)^{\phi}. \] (6)

In this paper we prove upper and lower estimates for the Hausdorff approximation of the shifted Heaviside function \(\tilde{h}_{t_0}(t) \) by a class of Kumaraswamy–Dagum–Log–Logistic cumulative distribution function – (KD–CDF).

2. Preliminaries.

Definition 1. The (basic) step function is:

\[\tilde{h}_{t_0}(t) = \begin{cases}
0, & \text{if } t < t_0, \\
[0, 1], & \text{if } t = t_0, \\
1, & \text{if } t > t_0,
\end{cases} \] (7)

usually known as shifted Heaviside function.

Definition 2. [12], [13] The Hausdorff distance (the H–distance) \(\rho(f, g) \) between two interval functions \(f, g \) on \(\Omega \subseteq \mathbb{R} \), is the distance between their completed graphs \(F(f) \) and \(F(g) \) considered as closed subsets of \(\Omega \times \mathbb{R} \).

More precisely,

\[\rho(f, g) = \max\{ \sup_{A \in F(f)} \inf_{B \in F(g)} ||A - B||, \sup_{B \in F(g)} \inf_{A \in F(f)} ||A - B|| \}, \] (8)

wherein \(||.||\) is any norm in \(\mathbb{R}^2 \), e. g. the maximum norm \(||(t, x)|| = \max\{|t|, |x|\}; hence the distance between the points \(A = (t_A, x_A), B = (t_B, x_B) \) in \(\mathbb{R}^2 \) is \(||A - B|| = \max(|t_A - t_B|, |x_A - x_B|)\).
Let us point out that the Hausdorff distance is a natural measuring criteria for the approximation of bounded discontinuous functions \[1\].

3. Main Results.

Let us consider the following five parametric sigmoid function

\[
F^*(t) = 1 - \left(1 - \left((1 + \lambda t^{-\delta})^{-\beta} \right)^\phi \right)
\]

with

\[
F^*(t_0) = \frac{1}{2}, \quad t_0 = \left(\frac{1}{\lambda} \left(\left(1 - 0.5^{\frac{1}{\psi}} \right)^{-\frac{1}{\lambda \psi}} - 1 \right) \right)^{-\frac{1}{\delta}}.
\]

The H-distance \(d = \rho(\tilde{h}_{t_0}, F^*) \) between the shifted Heaviside step function \(\tilde{h}_{t_0} \) and the sigmoidal function \(F^* \) satisfies the relation:

\[
F^*(t_0 + d) = 1 - \left(1 - \left((1 + \lambda(t_0 + d)^{-\delta})^{-\beta} \right)^\phi \right) = 1 - d.
\]

The following theorem gives upper and lower bounds for \(d \) in the case \(\beta = 1 \)

Theorem 1. Let

\[
a = - \left(1 - \left(\frac{1}{1 + \left(\left(\frac{-1+(1-0.5^{\frac{1}{\psi}})}{\lambda}\right)^{-\frac{1}{\lambda \psi}} \right)^{-\delta} \right) \right)^\phi
\]

(12)
\[
b = 1 + \delta \left(\left(\frac{-1+(1-0.5 \phi) \frac{1}{\lambda} - \frac{1}{\lambda \psi}}{-1+(1-0.5 \phi) \frac{1}{\lambda} - \frac{1}{\lambda \psi}} \right)^{-\frac{1}{\delta}} \right)^{-1-\delta} \lambda \left(\frac{1}{1+\left(\left(\frac{-1+(1-0.5 \phi) \frac{1}{\lambda} - \frac{1}{\lambda \psi}}{-1+(1-0.5 \phi) \frac{1}{\lambda} - \frac{1}{\lambda \psi}} \right)^{-\frac{1}{\delta}}} \right)^{-1-\delta} \right) ^{1+\psi} \times \]

\[
\times \left(1 - \left(\frac{1}{1+\left(\left(\frac{-1+(1-0.5 \phi) \frac{1}{\lambda} - \frac{1}{\lambda \psi}}{-1+(1-0.5 \phi) \frac{1}{\lambda} - \frac{1}{\lambda \psi}} \right)^{-\frac{1}{\delta}}} \right)^{-1+\phi} \right) ^{1+\psi} \right) ^{-1+\phi}. \tag{13}
\]

The H-distance \(d\) between the function \(\tilde{h}_{t_0}\) and the function \(F^*\) can be expressed in terms of the parameters for \(\frac{2b}{-a} > e^2\) as follows:

\[
d_l = \frac{1}{\frac{2b}{-a}} < d < \frac{\ln \left(\frac{2b}{-a} \right)}{\frac{2b}{-a}} = d_r. \tag{14}\]

Proof. We define the functions

\[
H(d) = F^*(t_0 + d) - 1 + d \tag{15}
\]

\[
G(d) = a + bd. \tag{16}
\]

From Taylor expansion

\[
H(d) - G(d) = O(d^2)
\]

we see that the function \(G(d)\) approximates \(H(d)\) with \(d \to 0\) as \(O(d^2)\) (cf. Fig. 1).

In addition \(G''(d) > 0\) and for \(\frac{2b}{-a} > e^2\)

\[
G(d_l) < 0; \quad G(d_r) > 0.
\]
This completes the proof of the inequalities (14).

The generated sigmoidal functions $F^*(t)$ for $\lambda = 0.1; \delta = 2.5; \beta = 1; \psi = 0.7; \phi = 1.8$ and $\lambda = 0.001; \delta = 3.5; \beta = 1; \psi = 0.8; \phi = 1.9$ are visualized on Fig. 2–Fig. 3.

From the Fig. 2–Fig.3 it can be seen that the "supersaturation" is fast.

Following Dagum (1977), in a period when individual data were rarely available, minimized

$$
\sum_{i=1}^{n} \left(F_n(t_i) - \left(1 - \left(1 - \left(1 + \lambda t_i^{-\delta} \right)^{-\beta} \right)^\psi \right)^\phi \right)^2.
$$

a non–linear least–squares criterion based on the distance between the empirical F_n and the CDF of a Kumaraswamy–Dagum approximation.

The appropriate least–square fitting of the real data (the experimental data - biomass for Xantobacter autotrophycum with electric field, see [26]) by the Dagum model yields for $\beta = 1, \lambda = 110, \delta = 1.45, \psi = 1.35$ and $\phi = 1.1$ and is visualized on Fig. 4.
Figure 2: The function $F^*(t)$ for $\lambda = 0.1; \delta = 2.5; \beta = 1; \psi = 0.7; \phi = 1.8; t_0 = 0.226373; H$-distance $d = 0.175123; d_l = 0.0689168; d_r = 0.184343$.

Figure 3: The function $F^*(t)$ for $\lambda = 0.001; \delta = 3.5; \beta = 1; \psi = 0.8; \phi = 1.9; t_0 = 0.0979526; H$-distance $d = 0.0763243; d_l = 0.0244187; d_r = 0.0906522$.
The appropriate least–square fitting of the real data by the Dagum model yields for $\beta = 1$, $\lambda = 110$, $\delta = 1.45$, $\psi = 1.35$ and $\phi = 1.1$.

4. Conclusion

In this paper we prove upper and lower estimates for the Hausdorff approximation of the shifted Heaviside function $\tilde{h}_t(t)$ by a class of Kumaraswamy–Dagum–Log–Logistic cumulative distribution function – (KD–CDF).

A family of five parametric sigmoidal functions based on Kumurawamy–Dagum cumulative distribution function is introduced finding application in population dynamics.

Numerical examples, illustrating our results are given.

We propose a software module (intellectual property) within the programming environment CAS Mathematica for the analysis of the considered family of (KD–CDF) functions.

For other results, see [14]–[26].

Acknowledgments. This work has been supported by the project FP17-FMI-008 of Department for Scientific Research, Paisii Hilendarski University of Plovdiv.
References

[23] N. Kyrkchiev. A new transmuted cumulative distribution function based on Verhulst logistic function with application in population dynamics. *Biomath Communications* 4, No 1 (2017); (15 pp.)

