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Abstract

In 1977, Michael Mackey and Leon Glass published a short
paper that presented and analyzed three delay-differential phys-
iological models, one of which, now known as the Mackey-Glass
equation, was shown to generate chaotic behavior. This paper
also introduced the concept of a dynamical disease. In this
perspective article, I attempt to place the Mackey-Glass pa-
per and a 1979 followup in historical context, and thereby to
gain some understanding of the very significant influence it has
had across the sciences. This influence is mapped through a
citation analysis, revealing both the timelessness of the themes
broached in the Glass-Mackey papers, and of the broad in-
fluence of these papers, far transcending the specific scientific
problems originally tackled.
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1 Introduction

Some coincidences are too good to pass up. This Year of Mathematical
Biology coincides with the 75th birthdays of Leon Glass and Michael
Mackey (Fig. 1), two key figures in the development of mathematical
biology as we know it today. And it is just a bit over 40 years since
the 1977 publication of their classic article “Oscillation and chaos in
physiological control systems” [1]. The moment therefore seems ap-
propriate to revisit this paper and to consider its impact.

2 Historical context

Before we delve into the Mackey-Glass paper [1] and its more detailed
companion paper [2], it is useful to consider the historical context.
With apologies to our colleagues in other parts of the world, I will
focus on the situation in the West, and particularly in North America,
since that was the context in which Glass and Mackey evolved.

The organization of mathematical biology as a distinct discipline
is relatively modern, and much was happening around the time of the
Glass-Mackey papers. The Society for Mathematical Biology, of which
both Glass (1997–1999) and Mackey (2009–2011) would go on to serve
as President, was founded in 1973 and held its first meeting in 1975
[3]. The Gordon Research Conference on Theoretical Biology and
Biomathematics started about a decade earlier, in 1964. Although
there were some forerunners, several key journals in the field were
founded in the decade preceding the Mackey-Glass paper (Table 1).

Regarding the scientific context of the time, Edward Lorenz’s clas-
sic paper “Deterministic nonperiodic flow”, which introduced many
of the key ideas later to be associated with chaotic dynamics, had
been published more than a decade earlier [4] but had yet to have
an enormous impact. By the end of 1977, it had been cited just 65
times (Web of Science search), with only a handful of citations in an
explicitly biological context [5, 6, 7, 8]. The term “chaos” was itself
first used with its modern dynamical-systems meaning in 1975 [9].

Delay-differential equations (DDEs) were not yet in wide use in
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Figure 1: Michael Mackey (left) and Leon Glass at the Leon Glass and
Michael C. Mackey Diamond Symposium, which was held at McGill
University on June 14th and 15th, 2018. Photo courtesy of Tomas
Gedeon.
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Table 1: First publication dates of some key journals
in mathematical biology.

Journal Start date
Acta Biotheoretica 1935
Bulletin of Mathematical Biophysicsa 1939
Journal of Theoretical Biology 1961
BioSystems 1967
Mathematical Biosciences 1967
Theoretical Population Biology 1970
Journal of Mathematical Biology 1974
a Renamed Bulletin of Mathematical Biology in

1973

biological modeling. To get a sense of the change, I conducted a
search of MathSciNet for papers whose database entries contain the
terms “delay” or “lag”, and whose primary subject classification was
“Biology and other natural sciences”. There were just 18 such papers
in the database published in 1977. For 2017, the same search yielded
372 papers. I need not explain to the readers of this article the ways
in which this search is flawed. Nevertheless, it speaks to a tremendous
growth in interest in delay systems in the biological context since 1977,
and to the relatively small literature on the topic at the time the
Mackey-Glass paper was written.

The modern theory of delay-differential equations was not yet well
known, despite some early work by Krasovskĭı [10] and Hale [11]. The
main theoretical tools in use at that time consisted of linear stability
analysis [12, 13, 14] and of transformation to chains of linear ordinary
differential equations [15, 16, 17, 18]. Numerical simulations were of
course also used, but were carried out on computers that were much
less capable than today’s.
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3 The 1977 Mackey-Glass paper

The 1977 Mackey-Glass paper [1] is under three pages long, but a
lot is accomplished in those three pages.1 Although one model from
this paper became known as “the Mackey-Glass equation” [19], there
are actually three models discussed there, one for respiratory control,
and two variants for the control of hematopoiesis (production of blood
cells). These models have a few features in common. They are explic-
itly cast as members of the class of production-destruction models, a
concept that an der Heiden and Mackey would formalize a few years
later [20]. Each model consists of a single delay-differential equation
with a single delay and a nonlinearity from the family of generalized
Hill functions. The space of equations of this family is explored by
looking at models with the delayed Hill function in the production or
destruction term, and by considering both conventional (monotone)
Hill functions, and a unimodal “hilly” function, i.e. a function of a
generalized Hill form with a single maximum on the positive semi-
axis. Let us briefly examine each of these models.

3.1 Respiratory control

Ventilation is largely controlled by the arterial carbon dioxide concen-
tration detected in the brainstem, denoted x. The dependence of the
ventilation on the CO2 concentration is known to be sigmoidal. In-
creased ventilation leads to an increased rate of removal of CO2 from
the blood in the lungs, but there is a delay τ before the blood from
the lungs reaches the brainstem. Thus, the ventilation at any time t
depends on the delayed concentration of CO2, xτ = x(t − τ). If the
metabolic rate is constant, then CO2 is produced at some fixed rate

1A modern reader might expect that a three-page paper would be supplemented
by many more pages of online supplementary materials. Of course, the web did
not exist in 1977, never mind online supplementary materials. Writing concise,
self-contained papers was an art form.
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λ. These assumptions lead to the model

dx

dt
= λ− x a(xτ/θ)

n

1 + (xτ/θ)n
. (1)

The constant a depends on the maximum ventilation, and on the effi-
ciency with which CO2 is removed from the bloodstream in the lungs,
while θ determines the concentration of CO2 at which half-maximal
ventilation is achieved.

Using linear stability analysis and numerical simulations, Mackey
and Glass found that this model could have a stable equilibrium point,
or an oscillatory regime. Using parameters either found in or estimated
from the experimental literature, Mackey and Glass showed that their
model predicted a stable steady state for normal subjects. However,
sufferers of Cheyne-Stokes breathing, in which periods of high ventila-
tion alternate with apneic phases, have an increased delay between gas
exchange in the lungs and brainstem detection, as well as an increased
sensitivity to CO2 [21]. Putting the parameters for a Cheyne-Stokes
patient into the model resulted in high-amplitude oscillations with a
relatively long latent period between pulses, the latter corresponding
to apneas. A very simple model with parameters estimated from the
literature was therefore able to reproduce both healthy and patholog-
ical behaviors.

3.2 Hematopoiesis

In hematopoiesis, the production of new blood cells is controlled by
circulating blood cell counts. Proliferation and maturation of blood
cells takes time, so there is a delay, τ , between the detection of a
deficiency in a circulating population, P , and the appearance in the
bloodstream of cells to replenish this population. At the time the
Mackey-Glass paper was written, the form of the dependence of the
production term on the population was not known, so two models were
investigated:

dP

dt
=

β0
1 + (Pτ/θ)n

− γP, (2)
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and

dP

dt
=

β0Pτ
1 + (Pτ/θ)n

− γP. (3)

In these equations, γ is the specific rate of loss of blood cells from
circulation, and θ is a scale factor for the population. In particular, in
variant (2), θ is the population at which the production term, which
is monotonically decreasing, falls to half its maximal value from a
maximum of β0. In variant (3), the production term is unimodal on
the positive semi-axis, with a maximum at Pτ = θ(n− 1)−1/n.

Model (2) was shown, by numerical simulation, to have a regime
with a stable equilibrium point, and an oscillatory regime at larger
values of the delay τ . Model (3) has these types of solutions as well,
but Mackey and Glass found that the initial Andronov-Hopf bifurca-
tion was followed by a sequence of period-doubling bifurcations lead-
ing to chaos as τ is increased (Fig. 2). The oscillatory solutions were
related to periodic hematological diseases, specifically to cyclical neu-
tropenia and to one particular clinical presentation of chronic gran-
ulocytic leukemia. In the latter ailment, the cell maturation time is
significantly increased, which would correspond to an increase in τ .
This correlates well with the oscillatory and chaotic solutions found
at larger τ . Because of its interesting dynamics, equation (3) has been
studied by many authors, and quickly became known as “the Mackey-
Glass equation” [19].

In discussing the bifurcations of equation (3), Mackey and Glass
specifically mention bifurcations in maps, especially the work of May
[6] as well as the famous Li and Yorke “Period three implies chaos”
paper [9]. Interestingly, they did not mention the chaotic solutions in
ordinary differential equations discovered by Lorenz [4], which might
seem odd to a modern reader. Mackey (and probably Glass) did know
about Lorenz’s work, but were more strongly influenced by contempo-
rary work demonstrating chaos in unimodal maps, particularly May’s
work [6, 22] (Glass, personal communication; Mackey, personal com-
munication). Beyond simple analogy, Mackey and Glass were aware
that it was possible to derive a map from their DDE by a singular
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Figure 2: Bifurcation diagram as a function of the delay τ for the
model (3), showing minima and maxima along trajectories after dis-
carding a transient of 2000 time units. Parameters: β0 = 0.2, γ = 0.1,
n = 10, θ = 1.

perturbation argument (not presented in their paper): Consider the
scaling

ξ = t/τ, $ = P/θ,

ε = (γτ)−1, β = β0/γ,

which transforms (3) to

ε
d$

dξ
=

β$τ

1 +$n
τ

−$, (4)
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keeping the subscript τ as a graphical convenience to denote a delayed
quantity, albeit now $τ = $(ξ − 1). By a standard argument of
singular perturbation theory extended to DDEs [23], in the limit ε→ 0
(i.e. the case of a large delay τ � γ−1), equation (4) reduces to the
map

$i+1 =
β$i

1 +$n
i

, (5)

where now the continuous time argument has been replaced by a dis-
crete iteration index i. Given that unimodal maps generically display
fixed points, periodic solutions and chaos in appropriate parameter
regimes [22], Mackey and Glass expected that their DDE would also
display these behaviors at larger values of the delay τ , as indeed proved
to be the case.

3.3 Dynamical diseases introduced

In the very last paragraph of this paper, Mackey and Glass introduced
a concept that would become highly influential, namely that of a dy-
namical disease. A dynamical disease is characterized by an intact
control system operating in an aberrant parameter range, resulting in
pathological behavior. Thus note that, in the Mackey-Glass study,
oscillations or chaos are obtained by varying the value of a delay, not
by setting a parameter to zero (corresponding to a broken component
of a control system) or by modifying the control function in any way.

3.4 Great minds thinking alike

When the time is right, it is not unusual for an idea to be enunciated
at more-or-less the same time by multiple authors, each unaware of the
others’ work. So it was with the Mackey-Glass equation, similar equa-
tions having been studied around the same time by Lasota [24, 25] and
by Perez, Malta and Countinho [26], the latter focusing on population
models for insects. Specifically, these papers discuss models with a
unimodal delayed nonlinearity, in each case finding chaotic solutions.
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Lasota’s work is particularly worthy of discussion, given that it
shares deep connections with that of Glass and Mackey, and in many
ways anticipated it. Lasota’s work also focused on hematopoiesis,
specifically in his case on the control of the circulating red blood cell
population. Although Lasota’s first publication on the topic was in
1976 [24], a 1974 paper by Chow analyzes an even earlier, unpublished
model of Lasota and Wazenska with an exponentially decaying delayed
term [27]. This early model displayed regimes with a stable fixed
point and with oscillatory solutions. In Lasota’s work of the period,
the link to the dynamics of maps is much more explicit than in the
Mackey-Glass papers, where this link is mentioned but not developed.
Even more striking is the discussion of diseased states arising as the
parameters of Lasota’s model are varied [25], which implicitly contains
the idea of a dynamical disease. Lasota and Mackey eventually became
acquainted, and went on to become friends and collaborators, a story
told by Mackey elsewhere [28].

4 The 1979 Glass-Mackey paper

The 1977 paper [1] was followed up in 1979 with a more detailed
study of these models [2]. In addition, the 1979 paper discussed a
number of additional disorders that might be described as dynamical
diseases: cardiac arrhythmias, psychological disorders and cancer were
particularly discussed, but a number of others were mentioned. The
section discussing potential dynamical diseases lays out an ambitious
research program for those interested in the intersection of dynamical
systems and human health, which many researchers were more than
happy to take up [29]. Glass and Mackey’s book, From Clocks to
Chaos [30], which emphasized the concept of a dynamical disease, no
doubt also played a role in popularizing this concept.

For those of us familiar with the mathematical biology literature
of the era, another striking feature of the 1979 paper was the use of
realistic parameters extracted from the literature. This is also true of
the 1977 paper, but because of space limitations and because much
of the discussion of parameters appears in footnotes, it is less obvi-
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ous there. A large subset of the mathematical biology literature of
the time studied models in the absence of any parameter estimates.
This was an unavoidable state of affairs given the paucity of quantita-
tive data across many fields of biology, with a few exceptions, notably
population biology. It is fortunate that Glass and Mackey were study-
ing problems in physiology, a field that had long emphasized rigorous,
quantitative measurements. The parameters needed for their model-
ing work were therefore either directly available, or could be estimated
from published measurements.

5 Long-term impact

Clearly, the concept of a dynamical disease was an important new idea
to most researchers in the field at the time, and giving this concept
a name increased its impact. It was, and remains, an important or-
ganizing idea for much research in mathematical biology, and is likely
the most important contribution of these papers. It also immediately
attracted the attention of clinicians. The first reference to dynami-
cal diseases in the (non-mathematical) medical literature appeared in
1979, in a comment in which Mali argues that psoriasis is a dynamical
disease [31]. By 1994, the idea of a dynamical disease had become so
important that a NATO Advanced Research Workshop was dedicated
to this topic, with a special issue of Chaos publishing papers from the
workshop [29].

The Mackey-Glass equation very quickly captured the imaginations
of researchers as a key paradigmatic chaotic system [32, 33, 34, 35],
finding a place alongside the logistic map and Lorenz equations, specif-
ically in the study of chaos in infinite-dimensional systems. Among
early citations, the Mackey-Glass equation was used by Farmer in this
vein to study the development of high-dimensional chaos [36], which
is related to classical ideas of turbulence in fluids.

Citation analyses can be abused, but they still do give us some
information on the influence of a paper. By October 11th of this year,
the two papers discussed here [1, 2] had been cited in 2438 distinct
sources indexed in the Web of Science (WoS). The vast majority of
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these cited at least the 1977 paper (2356 citations).
One of the more striking features of the citation data is the endur-

ing appeal of these papers (Fig. 3). In fact, the number of citations has,
on the whole, been trending up since the publication of the Science
paper more than 40 years ago, reaching a plateau since 2009 of 119±5
citations per year. (Note that the data for 2018 are incomplete.)
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Figure 3: Number of sources citing one or both of the Glass-Mackey
papers [1, 2] by year. Search performed in the Web of Science on Oc-
tober 11, 2018. The dashed line shows the average number of citations
in the period 2009–2017.

We can dig into the areas influenced by the Mackey-Glass papers
in a couple of different ways using the Web of Science. First, we can
use the WoS subject areas. The results of this analysis are presented
in Fig. 4. The broad impact of these papers across virtually all ar-
eas of science is obvious at a glance. Given the biomedical topics at
the heart of these papers, I also calculated a total citation count for
all medical subject areas combined, shown as the right-most bar in
the graph. The 357 citations in this combined category represent a
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significant citation count for purely theoretical papers, demonstrating
that the topics discussed by Glass and Mackey resonated with med-
ical scientists. Whether this is due to the specific systems studied,
respiratory control and hematopoiesis, or to the concept of dynami-
cal diseases is difficult to assess. However, it seems likely that some
combination of both is responsible for the popularity of these papers
in the medical literature.
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Figure 4: Number of sources citing one or both of the Glass-Mackey
papers [1, 2] by WoS subject areas. Search performed in the Web of
Science on October 11, 2018. Only subject areas generating 20 or more
citations are shown here. The final bar represents combined citations
in all medical subject areas.

Another way to gauge where these papers have had an impact is
to look at the citing articles themselves. To do this, I carried out a
series of keyword searches on the downloaded citation data from WoS.
As necessary, keywords were combined to account for different ways
to express the same concept. The searches were guided in part by the
issues directly raised in the Mackey-Glass papers, and in part by an
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examination of the titles of at least some of the papers in the search
results. Such searches will necessarily underestimate the number of
papers in a particular area that cited Mackey and Glass since they
are dependent on the appropriate keywords appearing in article titles.
This strategy is also somewhat limited by the appearance of reliable
keywords in the titles of papers. For example, while there seem to be
quite a few papers on gene expression in the output, I failed to find
keywords that extracted these papers specifically and with reasonable
reliability. Nevertheless, the results are informative, and are presented
in Table 2. Some of the topics in this table reflect those discussed by
Glass and Mackey in their two papers: hematopoiesis, cardiovascular
function, and respiratory control. Similarly, as seen above, studies
of singularly perturbed equations flow naturally from a study of the
Mackey-Glass equation. Others may seem surprising at first glance,
but are typically connected to the status of the Mackey-Glass equation
as a paradigmatic chaotic system, which moreover has an attractor of
variable dimension, depending on the value of the delay [36]. This is
clearly the case for the development of time-series analysis methods, as
well as for studies on the control of chaotic systems. At first glance, the
appearance of neural networks as one of the top research topics citing
Glass and Mackey might be surprising, except that predicting a chaotic
system’s evolution in time given a part of its time series is a frequent
challenge tackled in the field. As for synchronization, this relates to the
search for secure communication methods using synchronized chaotic
systems [37]. ODEs with low-dimensional attractors may not be up
to the job [38], so a system with a high-dimensional attractor like the
Mackey-Glass equation is an attractive chaos generator in this area of
research.

6 Closing comments

Great papers don’t have to be long. One short paper can present an
equation that is in itself a fertile object for study, or define a new
concept around which entire research programs can be built. A short
paper can inspire young scientists, as we repeatedly heard at the Leon
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Table 2: Partial classification of the citations to the Glass-Mackey
papers [1, 2] based on keyword searches in the downloaded results
from the Web of Science (Oct. 11, 2018 search).

Research topic Citing sources
Neural networks 353
Time-series analysis 322
Synchronization 165
Control of chaotic systems 110
Hematopoiesis 69
Cardiology and circulation 62
Respiratory control 59
Singularly perturbed equations 54

Glass and Michael C. Mackey Diamond Symposium earlier this year.
The 1977 Mackey-Glass paper [1] did all of those things. This Year
of Mathematical Biology is the perfect time to recognize a paper that
is not only an important part of the history of our field, but also a
vibrant part of its present.
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