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Abstract. In this paper we study the one–sided Hausdorff approx-
imation of the generalized cut function by sigmoidal general n–stage
growth model. We show that under some conditions the model is
useful insofar as the theory of sigmoidal functions is well developed.
The estimates of the value of the best Hausdorff approximation ob-
tained in this article can be used in practice as one possible additional
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criterions in ”saturation” and ”lag–time” study. As an illustrative ex-
ample we consider the modelling of the growth of red abalone (Haliotis
Rufescens) in Northern California. Numerical examples are presented
using CAS MATHEMATICA.

Keywords: modified n–stage growth model, generalized cut function
associated to the model, Hausdorff distance, upper and lower bounds

1 Introduction

Let us examine the following three–stage growth model

A
k1−→ B

k2−→ C (1)

with two steps (k1 and k2) depending on the ratio of the growth pa-
rameters k1

k2
.

For the mechanism the following system of ODEs is known [1]:

dA(t)

dt
= −k1A(t),

dB(t)

dt
= k1A(t)− k2B(t),

dC(t)

dt
= k2B(t),

A(0) = A0, B(0) = 0, C(0) = 0.

(2)

Noticing that

dA(t)

dt
+
dB(t)

dt
+
dC(t)

dt
= 0,

hence A+B + C = A0, and at any time, we find

C(t) = A0 −B(t)− A(t). (3)

From the first equation of the system (2) we find

A(t) = A0e
−k1t. (4)
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The equation

dB(t)

dt
+ k2B(t) = k1A0e

−k1t (5)

is Leibnitz’s differential equation with the solution:

B(t) = e−
∫
k2 dt

∫ t

0
k1A0e

−k1te
∫
k2 dt dt+Re−

∫
k2 dt

= e−k2tk1A0

∫ t

0
e−k1tek2t dt+Re−k2t

= e−k2tk1A0
1

k2−k1

∫ t

0
de(k2−k1)t +Re−k2t

= e−k2t k1A0

k2−k1

(
e(k2−k1)t − 1

)
+Re−k2t

= k1A0

k2−k1

(
e−k1t − e−k2t

)
+Re−k2t.

For t = 0 we have B(t = 0) = 0 = R and

B(t) =
k1A0

k2 − k1
(
e−k1t − e−k2t

)
. (6)

Hence we obtain the model

C(t) = A0

(
1− k1

k2 − k1
(
e−k1t − e−k2t

)
− e−k1t

)
(7)

For some details, see [2], [3].
We note that the equation (6) is the general expression for the

decay of a radionuclide, formed another radionuclide [2] (Chapter 5).

In [4], the authors debated to the following modified model for the
individual growth of marine invertebrates:

C̃(t) = A0

(
1− k1

n

(
e−k1t − e−k2t

)
− e−k2t

)
where n = k2 − k1, and k1

k2
is close to 1.
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Figure 1: Three–stage growth model C̃(t) (sigmoidal; red) for n =
k2 − k1, k1 = 1, k2 = 1.001 and three–stage model C(t) (first order;
green) for n = k1 − k2, k1 = 1, k2 = 2500.

The model C̃ predicts sigmoidal growth (see, Fig. 1), i.e. in a
three–stage growth model, the shape is controlled by the ratio k1

k2
[5].

For 3D–surface plot for the three–stage mechanism in the range
n = k2 − k1, or n = k1 − k2, see, Fig. 2 [5].

Without loosing of generality, for A0 = 1 and n = k2 − k1 > 0,
k1
k2
→ 1 we consider the following family:

C̃(t) = 1− k1
n

(
e−k1t − e−k2t

)
− e−k2t. (8)

We find that the sigmoid (8) has an inflection at point:

t∗ =
1

n
ln


(
−k22 +

k1k22
n

)
n

k31

 .

Definition 1. The associate to the (8) cut function C̃∗ is defined by
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Figure 2: 3D–surface plot for the three–stage mechanism in the range
n = k2 − k1, or n = k1 − k2 [5].

[5]

C̃∗(t) =


0, if t < t1,

C̃ ′(t∗)(t− t∗) + C̃(t∗), if t1 ≤ t < t2,

1, if t ≥ t2.

(9)

The straight line y = C̃ ′(t∗)(t− t∗) + C̃(t∗) crosses the lines y = 0
and y = 1 at the points t1 and t2.

Definition 2. [6] The one–sided Hausdorff distance −→ρ (f, g) between
two interval functions f, g on Ω ⊆ R, is the one–sided Hausdorff dis-
tance between their completed graphs F(f) and F(g) considered as
closed subsets of Ω× R. More precisely,

−→ρ (f, g) = sup
B∈F(g)

inf
A∈F(f)

||A−B||,

where || · || is a norm in R2.
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We recall that completed graph of f is the closure of the graph of
f as a subset of Ω × R. If the graph of an interval function f equals
F(f), then the f is called S-continuous.

The Hausdorff distance ρ(f, g) = max{−→ρ (f, g),−→ρ (g, f)} defines a
metric in the set of the S-continuous interval functions [7]–[10].

The one–sided Hausdorff distance d between the functions (8) and
(9) satisfies the relation

C̃(t2 + d) = 1− d. (10)

The following theorem gives upper and lower bounds for d

Theorem A [5]. Let

p = −e−k2t2 − k1
n
e−k1t2 +

k1
n
e−k2t2 ,

q = 1 + k2e
−k2t2 +

k21
n
e−k1t2 − k1k2

n
e−k2t2 ,

r = −2
q

p
; n = k2 − k1 > 0;

k1
k2
→ 1;

2k1 − k2
k1

< et2(k2−k1).

For the one–sided Hausdorff distance d between C̃∗(t) and the sig-
moidal function (8) the following inequalities hold for: r > e2

dl =
1

r
< d <

ln r

r
= dr. (11)

The model (8) for k1 = 1, k2 = 1.01, t∗ = 0.985033, t1 = 0.27045,
t2 = 2.97525 is visualized on Fig. 3.

From the nonlinear equation (10) and inequalities (11) we have:
d = 0.174444, dl = 0.0865764, dr = 0.211829.

The estimates of the value of the best Hausdorff approximation can
be used in practice as one possible additional criterion in ”saturation”
study.
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Figure 3: The cut function C̃∗(t) and the sigmoidal function C̃(t)
with k1 = 1, k2 = 1.01, t∗ = 0.985033, t1 = 0.27045, t2 = 2.97525; H–
distance d = 0.174444, dl = 0.0865764, dr = 0.211829.

2 Main Results

2.1 The four–stage growth model

Let us examine the following four–stage growth model

A
k1−→ B

k2−→ C
k3−→ D (12)

For the mechanism the following system of ODEs is known:

dA(t)

dt
= −k1A(t),

dB(t)

dt
= k1A(t)− k2B(t),

dC(t)

dt
= k2B(t)− k3C(t),

dD(t)

dt
= k3C(t),

A(0) = A0, B(0) = 0, C(0) = 0, D(0) = 0.

(13)

Noticing that
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dA(t)

dt
+
dB(t)

dt
+
dC(t)

dt
+
dD(t)

dt
= 0,

hence A+B + C +D = A0, and at any time, we find

D(t) = A0 − C(t)−B(t)− A(t). (14)

Calculate C(t), assuming that C(0) = 0

C(t) = e−
∫
k3 dt

∫ t

0
k1k2A0

k2−k1

(
e−k1t − e−k2t

)
e
∫
k3 dt dt

= e−k3t k1k2A0

k2−k1

∫ t

0

(
e−k1t − e−k2t

)
ek3t dt

= e−k3t k1k2A0

k2−k1

(∫ t

0
e(k3−k1)t dt−

∫ t

0
e(k3−k2)t dt

)
= e−k3t k1k2A0

k2−k1

(
1

k3−k1

∫ t

0
de(k3−k1)t − 1

k3−k2

∫ t

0
de(k3−k2)t

)
= e−k3t k1k2A0

k2−k1

(
e(k3−k1)t

k3−k1 −
1

k3−k1 −
e(k3−k2)t

k3−k2 + 1
k3−k2

)
= k1k2A0

(
e−k1t

(k2−k1)(k3−k1) + e−k2t

(k1−k2)(k3−k2) + e−k3t

(k1−k3)(k2−k3)

)
.

(15)

From (4), (6) and (15) we find

D(t) = A0

(
1− k1

k2−k1

(
e−k1t − e−k2t

)
−

k1k2

(
e−k1t

(k2−k1)(k3−k1) + e−k2t

(k1−k2)(k3−k2) + e−k3t

(k1−k3)(k2−k3)

)
− e−k1t

)
.

(16)

Without loosing of generality, for A0 = 1 and k3 > k2 > k1 > 0,
k3
k1
→ 1, k3

k2
→ 1 we consider the following family:
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Figure 4: Four–stage growth model D̃(t) (sigmoidal; red) for k1 = 1,
k2 = 1.001, k3 = 1.002 and D̃(t) (first order; green) for k1 = 1, k2 = 10,
k3 = 12.

D̃(t) = 1− k1
k2−k1

(
e−k1t − e−k2t

)
−

k1k2

(
e−k1t

(k2−k1)(k3−k1) + e−k2t

(k1−k2)(k3−k2) + e−k3t

(k1−k3)(k2−k3)

)
− e−k1t.

(17)

The model D̃ predicts sigmoidal growth (see, Fig. 4), i.e. in a
four–stage growth model, the shape is controlled by the ratio k3

k1
and

ratio k3
k2

.

Let the sigmoid (17) has an inflection point t∗.

Consider the following associate to the (17) cut function D̃∗
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D̃∗(t) =


0, if t < t1,

D̃′(t∗)(t− t∗) + D̃(t∗), if t1 ≤ t < t2,

1, if t ≥ t2.

(18)

The straight line y = D̃′(t∗)(t− t∗) + D̃(t∗) crosses the lines y = 0
and y = 1 at the points t1 and t2.

The one–sided Hausdorff distance d between the functions (17) and
(18) satisfies the relation

D̃(t2 + d) = 1− d. (19)

The following theorem gives upper and lower bounds for d

Theorem B. Let

p = −e−k1t2 − k1
k2−k1

(
e−k1t2 − e−k2t2

)
−

k1k2

(
e−k1t2

(k2−k1)(k3−k1) + e−k2t2

(k1−k2)(k3−k2) + e−k3t2

(k1−k3)(k2−k3)

)
,

q = 1 + e−k1t2k1 +
k21

k2−k1 e
−k1t2 − k1k2

k2−k1 e
−k2t2+

k1k2

(
e−k1t2k1

(k2−k1)(k3−k1) + e−k2t2k2
(k1−k2)(k3−k2) + e−k3t2k3

(k1−k3)(k2−k3)

)
,

r = −2 q
p
; k3 > k2 > k1 > 0, k3

k1
→ 1, k3

k2
→ 1.

(20)

For the one–sided Hausdorff distance d between D̃∗(t) and the
sigmoidal function (17) the following inequalities hold for: r > e2

dl =
1

r
< d <

ln r

r
= dr. (21)

Proof. Let us examine the function:

F (d) = D̃(t2 + d)− 1 + d. (22)
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Figure 5: The functions F (d) and G(d) for k1 = 1; k2 = 1.001; k3 =
1.002.

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function

G(d) = p+ qd. (23)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d→ 0 as O(d2) (see Fig. 5).
In addition G′(d) > 0.
From the conditions of the theorem, we see that p < 0 and q > 0

(for some details, see [5]) and G(dl) < 0, G(dr) > 0.

This completes the proof of the theorem.

The model (17) for k1 = 1, k2 = 1.001, k3 = 1.002, t∗ = 1.998,
t1 = 0.80467, t2 = 4.4955 is visualized on Fig. 5.

From the nonlinear equation (19) and inequalities (21) we have:
d = 0.15669, dl = 0.0772965, dr = 0.197887.
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Figure 6: The cut function D̃∗(t) and the sigmoidal function D̃(t) with
k1 = 1, k2 = 1.001, k3 = 1.002, t∗ = 1.998, t1 = 0.80467, t2 = 4.4955;
H– distance d = 0.15669, dl = 0.0772965, dr = 0.197887.

Figure 7: The solution of the system of ODEs (13): A(t) (red), B(t)
(green), C(t) (orange) and D(t) (sigmoid; thick) for k1 = 1, k2 =
1.001, k3 = 1.002.
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Figure 8: The solution of the system of ODEs (13): A(t) (red),
B(t) (green), C(t) (orange) and D(t) (first order; inflection point
t∗ = 1.00592× 10−16 ≈ 0; thick) for k1 = 10, k2 = 15, k3 = 0.6.

The solution of the system of ODEs (13) with k1 = 1, k2 = 1.001,
k3 = 1.002 and A(0) = 1, B(0) = 0, C(0) = 0, D(0) = 0 is plotted on
Fig. 7.

In a strongly disturbed order of the reaction constants ki, for ex-
ample k1 = 10, k2 = 15, k3 = 0.6, the solution of the ODEs is depicted
in Fig. 8.

Growth curves are found in a wide range of disciplines, such as
biology, chemistry and medical science.

Estimating the lag time in the growth process is a practically im-
portant problem, as it may indicate a successful therapy for a number
of diseases.

The curve C̃(t) is typically divided into the lag phase, the growth
phase, and the plateau phase.

The inflection time t∗ is when the growth rate reaches its maximum.
The lag time is then typically estimated by extending the tangent at
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t∗ down to the time axis.
Nevertheless, any sigmoid function can be good illustration for the

concept of lag time [11].

2.2 The general case

Let us examine the general case

N1
k1−→ N2

k2−→ N3
k3−→ · · ·Nn−1

kn−1−→ Nn, (24)

For the mechanism the following system of ODEs is known:

dN1(t)

dt
= −k1N1(t),

dN2(t)

dt
= k1N1(t)− k2N2(t),

· · ·

dNn−1(t)

dt
= kn−2Nn−2(t)− kn−1Nn−1(t),

dNn(t)

dt
= kn−1Nn−1(t).

(25)

Let N1(0) = A0 = 1; N2(0) = · · · = Nn−1(0) = Nn(0) = 0.

Noticing that

dN1(t)

dt
+
dN2(t)

dt
+ · · ·+ dNn−1(t)

dt
+
dNn(t)

dt
= 0,

hence N1 +N2 + · · ·+Nn−1 +Nn = A0 = 1, and at any time, we find

Nn(t) = 1−
n−1∑
i=1

Ni(t)

or

Nn(t) = 1−
n−1∑
i=2

Ni(t)− e−k1t. (26)
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The solutions Ni(t); i = 2, 3, . . . , n − 1 can be generated by the
formula of Bateman [3]:

Nl(t) = k1k2 . . . kl−1

l∑
i=1

Wie
−kit; l = 2, 3, . . . , n− 1 (27)

where

Wi =
l∏

j = 1
i 6= i

1

kj − ki
.

3 Numerical example.

We examine the following data. (The small data for modeling the
growth of red abalone is shown in Table 1. For more details, see [12]).

The model D̃(t) (17) based on the data of Table 1 for the estimated
parameters:

A0 = 179.6; k1 = 0.575; k2 = 0.58; k3 = 0.593622

is plotted on Fig. 9.

4 Concluding Remarks

.

The model (26) has a certain right of existence insofar as the theory
of sigmoidal functions is well developed.

The estimates of the value of the best Hausdorff approximation ob-
tained in this article can be used in practice as one possible additional
criterion in ”saturation” study.
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Age Length(mm)
1 16.1
2 33.9
3 54.3
4 76.2
5 97.8
6 117.1
7 133.3
8 146.5
9 157.2
10 166
11 173.3
12 179.6

Table 1: Data for modeling the growth of red abalone Haliotis
Rufescens in Northern California [12]

For some approximation, computational and modelling aspects, see
[13]–[40].

The results obtained in this paper can be used when controlling
growth in Software Reliability Models, see [41]–[44].

Based on the methodology proposed in the present note, the reader
may formulate the corresponding approximation problems for the gen-
eral model Nn(t) (26) on his/her own.
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Figure 9: The model D̃(t)

References

[1] A. Cornish–Bowden, Fundamentals of Enzyme Kinetics, Wiley–
Blackwell, 2012, ISBN: 978-3-527-33074-4.

[2] D. Soete, R. Gijbels, J. Hoste, Neuron Activation Analysis, Wiley–
Interscience, 1972.

[3] H. Bateman, The solution of a system of differential equations oc-
curring in the theory of radio–active transformations, Proc. Cam-
bridge Phil. Soc., 15 1910, 423–427.

[4] L. Rogers–Bennett, D. W. Rogers, A two–step growth curve: Ap-
proach to the von Bertalanffy and Gompertz equations, Adv. in
Pure Math., 6 2016, 321–330.

[5] S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A note on the
three–stage growth model, Dynamic Systems and Applications,
28(1) 2019, 63–72.

[6] B. Sendov, Hausdorff Approximations, Kluwer, Boston, 1990.

95



[7] R. Anguelov, S. Markov, Hausdorff Continuous Interval Functions
and Approximations, In: SCAN 2014 Proceedings, LNCS, ed. by
J.W.von Gudenberg, Springer, Berlin, 2015.

[8] R. Anguelov, S. Markov, B. Sendov, On the Normed Linear Space
of Hausdorff Continuous Functions. In: Lirkov, I., et al. (Eds.):
Lecture Notes in Computer Science, 3743, Springer, 2006, 281–
288.

[9] R. Anguelov, S. Markov, B. Sendov, Algebraic Operations on
the Space of Hausdorff Continuous Functions. In: Bojanov, B.
(Ed.): Constructive Theory of Functions, Prof. M. Drinov Aca-
demic Publ. House, Sofia, 2006, 35–44.

[10] R. Anguelov, S. Markov, B. Sendov, The Set of Hausdorff Con-
tinuous Functions - the Largest Linear Space of Interval Functions,
Reliable Computing, 12 2006, 337–363.

[11] S. Shoffner, S. Schnell, Estimation of the lag time in a subse-
quent monomer addition model for fibrill elongation, bioRxiv The
preprint server for biology, doi:10.1101/034900, 2015, 1–8.

[12] L. Rogers–Bennett, D. W. Rogers, S. A. Schultz, Modeling growth
and mortality of red abalone Haliotis Rufescens in Northern Cali-
fornia, J. of Shellfish Research, 26(3) 2007, 719–727.

[13] N. Kyurkchiev, S. Markov, On the Hausdorff distance between
the Heaviside step function and Verhulst logistic function, J. Math.
Chem., 54(1) 2016, 109–119.

[14] N. Kyurkchiev, S. Markov, Sigmoid functions: Some Approxima-
tion and Modelling Aspects, LAP LAMBERT Academic Publish-
ing, Saarbrucken, 2015, ISBN 978-3-659-76045-7.

[15] N. Kyurkchiev, A. Iliev, S. Markov, Some Techniques for Re-
currence Generating of Activation Functions: Some Modeling and
Approximation Aspects, LAP LAMBERT Academic Publishing,
2017, ISBN: 978-3-330-33143-3.

96



[16] R. Anguelov, M. Borisov, A. Iliev, N. Kyurkchiev, S. Markov,
On the chemical meaning of some growth models possessing
Gompertzian-type property, Math. Meth. Appl. Sci., 2017, 1–12,
doi:10.1002/mma.4539.

[17] R. Anguelov, N. Kyurkchiev, S. Markov, Some properties of the
Blumberg’s hyper-log-logistic curve, BIOMATH, 7(1) 2018, 8 pp.

[18] A. Iliev, N. Kyurkchiev, S. Markov, On the Approximation of
the step function by some sigmoid functions, Mathematics and
Computers in Simulation, 133 2017, 223–234.

[19] A. Iliev, N. Kyurkchiev, S. Markov, Approximation of the cut
function by Stannard and Richards sigmoid functions, IJPAM,
109(1) 2016, 119–128.

[20] S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A note on the
Log-logistic and transmuted Log-logistic models. Some applica-
tions, Dynamic Systems and Applications, 27(3) 2018, 593–607.

[21] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, On the approxi-
mation of the cut functions by hyper-log-logistic function, Neural,
Parallel and Scientific Computations, 26(2) 2018, 169–182.

[22] N. Kyurkchiev, A. Iliev, S. Markov, Families of recurrence gen-
erated three and four parametric activation functions, Int. J. Sci.
Res. and Development, 4(12) 2017, 746–750.

[23] N. Kyurkchiev, A note on the new geometric representation for
the parameters in the fibril elongation process, C. R. Acad. Bulg.
Sci., 69(8) 2016, 963–972.

[24] N. Kyurkchiev, On the numerical solution of the general ”ligand-
gated neuroreceptors model’ via CAS Mathematica, Pliska Stud.
Math. Bulgar., 26 2016, 133–142.

[25] N. Kyurkchiev, S. Markov, On the numerical solution of the gen-
eral kinetic ”K-angle” reaction system, Journal of Mathematical
Chemistry, 54(3) 2016, 792–805.

97



[26] L. Rogers–Bennett, D. Rogers, W. Bennett, T. Ebert, Modeling
Red Sea Urchin Growth Using Six Growth Models, Fishery Bul-
letin, 101 2003, 614–626.

[27] R. Leaf, L. Rogers–Bennett, Y. Jiao, Exploring the Use of a Size
Based Egg per Recruit Model for the Red Abalone Fishery in Cali-
fornia, North American Journal of Fisheries Management, 28 2008,
1638–1647.

[28] N. Lester, B. Shuter, P. Abrams, Interpreting the von Bertalanffy
Model of Somatic Growth in Fishes: The Cost of Reproduction,
Proceedings of the Royal Society B: Biological Sciences, 271 2004,
1625–1631.

[29] A. Hernandez–Llamas, D. Ratkowsky, Growth of Fishes, Crus-
taceans and Mollusks: Estimation of the von Bertalanffy, Logistic,
Gompertz and Richards Curves and a New Growth Model, Marine
Ecology Progress Series, 282 2004, 237–244.

[30] L. von Bertalanffy, A Quantitative Theory of Organic Growth
(Inquiries on Growth Laws. II), Human Biology, 10 1938, 181–
213.

[31] K. Sainsbury, Effect of Individual Variability on the von Berta-
lanffy Growth Equation, Canadian Journal of Fisheries and
Aquatic Sciences, 37 1980, 241–247.

[32] P. Haaker, D. Parker, K. Barsky, C. Chun, Growth of Red
Abalone, Haliotis rufescens (Swainson), at Johnson’s Lee Santa
Rosa Island, California, Journal of Shellfish Research, 17 1998,
747–753.

[33] N. Kyurkchiev, A. Iliev, Extension of Gompertz-type Equation
in Modern Science: 240 Anniversary of the birth of B. Gompertz,
LAP LAMBERT Academic Publishing, 2018, ISBN: 978-613-9-
90569-0.

98



[34] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, On the approxi-
mation of the generalized cut functions of degree p+ 1 by smooth
hyper-log-logistic function, Dynamic Systems and Applications,
27(4) 2018, 715–728.

[35] O. Rahneva, H. Kiskinov, I. Dimitrov, V. Matanski, Application
of a Weibull Cumulative Distribution Function Based on m Exist-
ing Ones to Population Dynamics, International Electronic Journal
of Pure and Applied Mathematics, 12(1) 2018, 111–121.

[36] J. Toth, A. L. Nagy, D. Papp, Past, Present, and Future Programs
for Reaction Kinetics. In: Reaction Kinetics: Exercises, Programs
and Theorems, Springer, New York, 2018, ISBN: 978-1-4939-8641-
5.

[37] Y. Prostov, Y. Tiumentsev, Recurrent neurodynamic model of
neuron with variable activation characteristic, Biologically Inspired
Cognitive Architectures, 2018, 8 pp.

[38] N. Guliyev, V. Ismailov, On the approximation by single hid-
den layer feedforward neural networks with fixed weights, Neural
Networks, 98 2018, 296–304.

[39] D. Costarelli, R. Spigler, Solving numerically nonlinear sys-
tems of balance laws by multivariate sigmoidal functions ap-
proximation, Computational and Applied Mathematics, 2016,
doi:10.1007/s40314-016-0334-8.

[40] D. Costarelli, R. Spigler, G. Vinti, A survey on approximation by
means of neural network operators, Journal of NeuroTechnology,
1(1) 2016, 1–24.

[41] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some software re-
liability models: Approximation and modeling aspects, LAP LAM-
BERT Academic Publishing, 2018, ISBN: 978-613-9-82805-0.

[42] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Nontrivial Models
in Debugging Theory (Part 2), LAP LAMBERT Academic Pub-
lishing, 2018, ISBN: 978-613-9-87794-2.

99



[43] V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, On the
Burr XII-Weibull Software Reliability Model, Int. J. of Pure and
Appl. Math., 119(4) 2018, 639–650.

[44] V. Kyurkchiev, H. Kiskinov, O. Rahneva, G. Spasov, A Note
on the Exponentiated Exponential-Poisson Software Reliability
Model, Neural, Parallel, and Scientific Computations, 26(3) 2018,
257–267.

100


	Introduction
	Main Results
	The four–stage growth model
	The general case

	Numerical example.
	Concluding Remarks

