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criterion in ”saturation” study. Numerical examples are presented
using CAS MATHEMATICA.
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1 Introduction

In [1] the authors introduced a new probability distribution with sup-
port on (0, 1) and named the distribution as Unit–Logistic Distribution
(ULD).

In [2] the authors introduced an alternative parametrization, where
one parameter is the median.

The corresponding cumulative distribution function is written as
[3]:

M(t) =

(
1 +

(
µ(1− t)
t(1− µ)

)β)−1
, (1)

where 0 ≤ t ≤ 1 and 0 ≤ µ ≤ 1 is the median.
In [4] the authors introduced a new probability distribution with

support on (0, 1) and named the distribution as Unit–Weibull Distri-
bution (UWD). The corresponding cumulative distribution function is
written as:

M1(t) = e−α(− ln t)β , (2)

where 0 ≤ t ≤ 1 and α, β > 0.
The Topp–Leone (TL) distribution was originally proposed by Topp

and Leone (1955) [17] as an alternative to beta distribution and it has
been applied for some failure data. The corresponding cumulative
distribution function is written as:

M2(t) = tα(2− t)α, (3)

where 0 ≤ t ≤ 1 and α > 0.
Such cumulative probability distributions can be used with success

in approximating parameterized data in the field of ”virus-theory”,
insurance mathematic and population dynamics.
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2 Main Results

In this Section we study the Hausdorff approximation [5] of the Heavi-
side step function by families of the Unit–Logistic (UL), Unit–Weibull
(UW) and Topp–Leone (TL) cumulative sigmoids.

2.1 A note on the Unit–Logistic cumulative sig-
moid

Evidently M(t0 = µ) = 1
2
. The Hausdorff distance d between the

function

hµ(t) =


0, if t < µ,

[0, 1], if t = µ,

1, if t > µ,

and the sigmoid (1) satisfies the relation

M(t0 + d) = 1− d. (4)

The following theorem gives upper and lower bounds for d.

Theorem 1. Let
p = −1

2
,

q = 1 + β
4µ(1−µ) ,

r = 2.1q.

(5)

For the Hausdorff distance d between hµ(t) and the sigmoid (1) the

following inequalities hold for q >
e1.05

2.1
:

dl =
1

r
< d <

ln r

r
= dr. (6)

Proof. Let us examine the function:

F (d) = M(t0 + d)− 1 + d. (7)
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Figure 1: The functions F (d) and G(d) for µ = 0.5; β = 10.

From F ′(d) > 0 we conclude that function F is increasing.
Consider the function

G(d) = p+ qd. (8)

From Taylor expansion we obtain G(d) − F (d) = O(d2). Hence G(d)
approximates F (d) with d→ 0 as O(d2) (see Fig. 1).

In addition G′(d) > 0. Further, for q >
e1.05

2.1
we have G(dl) < 0

and G(dr) > 0.
This completes the proof of the theorem.

2.2 Numerical examples

The model (1) for µ = 0.5; β = 2 is visualized on Fig. 2. From the
nonlinear equation (4) and inequalities (6) we have: d = 0.180552,
dl = 0.15873, dr = 0.292151.

The model (1) for µ = 0.5; β = 10 is visualized on Fig. 3. From the
nonlinear equation (4) and inequalities (6) we have: d = 0.0659004,
dl = 0.04329, dr = 0.135923.
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Figure 2: The model (1) for µ = 0.5; β = 2; H–distance d = 0.180552,
dl = 0.15873, dr = 0.292151.

Figure 3: The model (1) for µ = 0.5; β = 10; H–distance d =
0.0659004, dl = 0.04329, dr = 0.135923.
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Figure 4: The model (1) for µ = 0.5; β = 30; H–distance d =
0.0291741, dl = 0.015361, dr = 0.0641463.

The model (1) for µ = 0.5; β = 30 is visualized on Fig. 4. From the
nonlinear equation (5) and inequalities (6) we have: d = 0.0291741,
dl = 0.015361, dr = 0.0641463.

From the graphics it can be seen that the ”saturation” is faster.
Some computational examples using relations (3) are presented in

Table 1. The last column of Table 1 contains the values of d computed
by solving the nonlinear equation (3). From Table 1, it can be seen
that the right estimates for the value of the best Hausdorff distance
are precise.

We examine the experimental (parameterized) data (Biomass for
Xantobacter autotrophycum with electric field). The appropriate fit-
ting of the data by the model (1) with µ = 0.5 and β = 2.0854 is
visualized on Fig. 5.
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β dl dr d from (4)
2 0.15873 0.292151 0.180552
10 0.04329 0.135923 0.0659004
20 0.0226757 0.0858608 0.0397299
30 0.015361 0.0641463 0.0291741
40 0.0116144 0.0517481 0.0233246
50 0.00933707 0.0436392 0.019562

Table 1: Bounds for d computed by (6) for fixed µ = 0.5 and some
values of scale parameter β.

Figure 5: The model (1) for µ = 0.5; β = 2.0854; The Hausdorff
distance: d = 0.176608.
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2.3 A note on the Unit–Weibull cumulative sig-
moid

We study the Hausdorff approximation of the shifted Heaviside step
function ht0(t) by the family (2).

Let

t0 = e−( ln 2
α )

1
β

. (9)

Evidently, M1(t0) = 1
2
.

The one–sided Hausdorff distance d between the function ht0(t)
and the sigmoid (2) satisfies the relation

M1(t0 + d) = 1− d. (10)

The following theorem gives upper and lower bounds for d.

Theorem 2. Let
p = −1

2
,

q = 1 + αβ
2

( ln 2
α )

β−1
β

e
−( ln 2

α )
1
β

r = 2.1q.

(11)

For the one–sided Hausdorff distance d between ht0(t) and the sigmoid

(2) the following inequalities hold for q >
e1.05

2.1
:

dl =
1

r
< d <

ln r

r
= dr. (12)

Proof. Let us examine the function:

F (d) = M(t0 + d)− 1 + d. (13)

and
G(d) = p+ qd. (14)

The proof follows the ideas given in this paper.
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Figure 6: The functions F (d) and G(d) for α = 1; β = 2.

We note that from Taylor expansion we obtain

G(d)− F (d) = O(d2),

i.e. G(d) approximates F (d) with d→ 0 as O(d2) (see Fig. 6).

Further, for q >
e1.05

2.1
we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.

The model (2) for α = 1; β = 2 is visualized on Fig. 7. From the
nonlinear equation (10) and inequalities (12) we have: d = 0.193768,
dl = 0.163404, dr = 0.296011.

2.4 A note on the Topp–Leone cumulative sig-
moid

We study the Hausdorff approximation of the shifted Heaviside step
function ht0(t) by the family (3).

Let t0 ∈ (0, 1) is the solution of the nonlinear equation

t0(2− t0)− 0.5
1
α = 0 (15)

i.e. M2(t0) = 1
2
.
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Figure 7: The model (2) for α = 1; β = 2; t0 = 0.434937; H-distance
d = 0.193768, dl = 0.163404, dr = 0.296011.

The one–sided Hausdorff distance d between the function ht0(t)
and the sigmoid (3) satisfies the relation

M2(t0 + d) = 1− d. (16)

The following theorem gives upper and lower bounds for d.

Theorem 3. Let

p = −1
2
,

q = 1 + 2α
(
1
2

)α−1
α (1− t0)

r = 2.1q.

(17)

For the one–sided Hausdorff distance d between ht0(t) and the sigmoid
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Figure 8: The model (3) for α = 5; t0 = 0.640209; H-distance d =
0.169087, dl = 0.15529, dr = 0.289222.

(3) the following inequalities hold for q >
e1.05

2.1
:

dl =
1

r
< d <

ln r

r
= dr. (18)

The proof follows the ideas given in this paper and will be omitted.
The model (3) for α = 5 is visualized on Fig. 8. From the non-

linear equation (16) and inequalities (18) we have: d = 0.169087,
dl = 0.15529, dr = 0.289222.

For some approximation, computational and modelling aspects, see
[6]–[13], [18]–[27].

The results obtained in this paper can be used when controlling
growth in Software Reliability Models, see [15]–[16].
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