Stability and Instability of Improved Heimburg–Jackson Model to Nerve Pulse Propagation

N. Kutev, N. Kolkovska, M. Dimova
Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences, Sofia, Bulgaria
kutev@math.bas.bg, natali@math.bas.bg, mkoleva@math.bas.bg

Keywords: Nerve Pulse, Boussinesq Equation, Solitary Waves, Orbital Stability, Instability.

There are a number of mathematical models to nerve pulse propagation in biomembranes, as Hodgkin–Huxley, FitzHugh–Nagumo and Heimburg–Jackson models, see, e.g., [1,2]. However, these models do not describe adequately all observed phenomena. Recently in [2], generalized Boussinesq equation with quadratic–cubic nonlinearity, i.e.,

\[u_{tt} - u_{xx} + h_1 u_{xxxx} - h_2 u_{ttxx} + (au^2 + bu^3)_{xx} = 0 \] (1)

is proposed as an improvement of the well–known Heimburg–Jackson model \((h_2 = 0)\).

In this study we prove analytically the orbital stability and instability of solitary waves to the improved Heimburg–Jackson model (1). The results depend on the relationship between the parameters \(h_1, h_2, a, b\). For the set of data, obtained experimentally, our theoretical results are in full agreement with the numerical simulations, presented in [3].

References

