Controlling African Trypanosomiasis in Livestock in Proximity to Wildlife

Rosemary Akinyi Aogo1, Belthasara Assan1, Holly Gaff2,3, Vusi Mpendulo Magagula2, Justin MW Munganga4, Jeanine Mwambakana5, Ikechukwu Oguoma6

1Department of Mathematical Sciences, Stellenbosch University, South Africa, rosemary@aims.ac.za, belthasara@aims.ac.za
2School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, South Africa, gutjwa@gmail.com
3Department of Biological Sciences, Old Dominion University, USA, holly.gaff@gmail.com
4Department of Mathematical Sciences, University of South Africa, Mungajmw@unisa.ac.za
5Department of Science, Mathematics and Technology Education, University of Pretoria, South Africa, jeanine.mwambakana@up.ac.za
6Department of Mathematics and Applied Mathematics, University of the Free State, South Africa, ikeoguoma@yahoo.com

Keywords: Diffusion reaction, nonstandard finite difference, exact scheme, stability, method of lines.

African trypanosomiasis is a disease that affects humans and livestock. It is a protozoan disease that is spread by the tsetse fly. Nagana, as the disease is called in cattle, causes lethargy, wasting and death if untreated. The disease is challenging to control because the protozoan can cycle within wildlife populations, which do not seem to be affected by the infections. Additionally, the protozoan will increase in virulence if cycling only within a domestic livestock population.

For this study, we adapt previously published SIR models to include three populations: vectors, livestock and wildlife. The model is parameterized using information from the Hluhlule-iMfolozi Park in the northern KwaZulu-Natal Province of South Africa. The model will include a parameter for treating the cattle with insecticide as is common practice in attempting to control this disease. We will assess the efficacy of this technique as a function of proximity to the wildlife populations.