Modeling the Transmission Dynamics of the Middle East Respiratory Syndrome Coronavirus in Humans

S. Usaini1, A. S. Hassan2, S. M. Garba3, J. M.-S. Lubuma4
Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa

1kunyasco@yahoo.com, 2Adamu.Hassan@tuks.co.za, 3salisu.garba@up.ac.za, 4jean.lubuma@up.ac.za

\textbf{Keywords:} Mers-conoravirus, invasion threshold, stability, isolation, quarantine.

\textbf{Abstract}

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a novel respiratory disease, reported in the year 2012, initially localize to Middle East countries, with a high potential for transmission via close contacts amongst families and health care workers [1]. In this study, we formulate and fully analyze a mathematical model that assess the impact of quarantining and isolation strategies in controlling the disease. Analysis of the model shows that the MERS-CoV can be controlled if a certain threshold quantity can be brought to a value less than unity [3]. In the absence of vaccine or treatment, these strategies have proved to be effective in containing the disease [2]. Numerical simulations are used to support the results.

\textbf{References}

