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Abstract

A mathematical model for the dynamics of an animal species
propagating on a plain is constructed. Travelling wave solu-
tions are then sought for two cases, the case with constant
diffusion coefficient and that with density-dependent diffusion
coefficient. The results show the existence of travelling wave
solutions in both cases. The existence of travelling wave solu-
tions for the two-dimensional model is important as it captures
more realistically the physical interactions of species in a habi-
tat. The minimum wave speeds as well as the basins of attrac-
tion were determined. The results also indicate the occurrence
of a saddle-node bifurcation in the case with density-dependent
diffusion coefficient. The basins of attraction in both cases are
functions of the wave speed and is still a subject for further
investigation.
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1 Introduction

Animal species such as human beings, cattle, goats, sheep and others
propagate on land. They move about freely and interact with one
another. In the case of a single species, say cattle, we are interested
in examining the dynamics of propagation on a plain. A model of this
nature was developed by Fisher in 1937 for the propagation of an ad-
vantageous gene in humans. In the current research, we add a natural
mortality rate as it is natural for animal species to die. An impor-
tant aspect of this work is the method of analysis of the model equa-
tion. Researchers such as Murray(2002), Kot (2001), Akubo (2001)
and Debnath (2005) have analysed similar equations by seeking trav-
elling wave solutions. In particular, Murray (2002) obtained the exact
travelling wave solution of the Fisher equation. In the current re-
search, a two-dimensional reaction-diffusion model will be constructed
and analysed using the travelling wave solution procedure. The two-
dimensional model captures the physical situation more realistically,
yet not much studies have been done on it. Two cases of the model will
be considered, the cases of constant and density-dependent diffusion
coefficients. Mansour (2008) analysed a nonlinear partial differential
equation with density-dependent diffusion coefficient using the trav-
elling wave approach and obtained approximate and exact travelling
wave solutions using Taylor’s series expansion method. We shall use
asymptotic approximation to obtain approximate travelling wave so-
lutions similar to that of Debnath (2005). This approach enables us
obtain the approximate equations of the heteroclinic orbits, which will
be the confirmation of the existence of travelling wave solutions, apart
from the conditions outlined by Billingham and King (2000) for the
existence of such solutions. Numerical solutions to similar problems
have been obtained by Mansour (2007), Mansour (2008) and Ndam
et al (2012). Fassoni et al (2014) reported that parameter values in a
competition model determine the shape and size of the basins of at-
traction of the equilibria and could also influence the outcome of the
competition.The basins of attraction of the models will be determined
and the biological implications outlined. The remaining parts of this



paper are organised as follows: Section 2 deals with the mathematical
formulation of the model, the travelling wave solution and analysis
of the model with constant diffusion coefficient will be carried out in
section 3, while the travelling wave solution of the density-dependent
diffusion coefficient model will be the subject of section 4. Section 5
will be dedicated to Results and Discussions. Finally, conclusions will
be the subject of section 6.

2 Mathematical formulation

The model equation governing the propagation of an animal species
on land is given by the Fisher-KPP equation in two dimensions

ut = D (uxx + uyy) + ru
(

1− u

K

)
− au (1)

where D > 0 is the diffusion coefficient, which is the rate at which the
species move on land, r > 0 is the linear growth rate, K > 0 is the
carrying capacity of the environment, and a > 0 is the natural death
rate, since the species can die of natural causes or harvesting, hence
a � 1. The species undergo a logistic growth subject to the carry-
ing capacity of the environment as captured by the term ru

(
1− u

K

)
.

The term D (uxx + uyy) on the other hand, captures the random mass
movement of the animal species on the field.

We now scale the equation to get rid of the many parameters and
to make the equation dimensionless for ease of analysis. Using the
non-dimensional variables x∗, y∗, t∗, a∗ and u∗ defined by

x =

√
D

r
x∗, y =

√
D

r
y∗, t =

t∗

r
, a = ra∗, u = Ku∗,

where
√

D
r

represents the length scale, we obtain after dropping as-

terisks, the equation

ut = uxx + uyy + u(1− u)− au (2)



Diffusion in this case refers to the number of animals that pass through
a unit area per unit time measured in m2/s. The diffusion coefficient
can be constant if the species are assumed to move approximately
uniformly on land. Moreover, diffusion coefficient can be density-
dependent, which reflects the effects of population size on the dispersal
of the species. Details of this can be found in Okubo (2001). In real-
ity, the movement of animal species can be hindered by their number,
hence density-dependent diffusion models capture more realistically
the patterns of movement of species than the simple constant diffu-
sion models. The model equation (1) with density-dependent diffusion
coefficient D(u), becomes

ut = [D(u)ux]x + [D(u)uy]y + ru
(

1− u

K

)
− au (3)

Using the same scalling variables above, the scaled model equation
becomes

ut = [d(u)ux]x + [d(u)uy]y + u (1− u)− au (4)

where d(u) = D(u)
D

and D is some typical coefficient of diffusion.

3 Travelling wave solution and stability

analysis

The Fisher-type model equation with constant and density-dependent
diffusion coefficients admit a travelling wave solution of the form

u(x, y, t) = u(z) (5)

where z = αx + βy − ct, c is the constant wave speed, while α and
β are constants. Using the variable z in (2) leads to the second order
nonlinear ordinary differential equation

u′′ + δu′ + bu(1− a− u) = 0 (6)

where δ = c
κ2

, b = 1
κ2

, κ2 = α2 + β2 and u′ = du
dz

. Reducing (6) to a
first order system of ordinary differential equations becomes

u′ = v, v′ = −δv − bu(1− a− u) (7)



The system (7) has the equilibrium points (u, v) = (0, 0) and (u, v) =
(1 − a, 0) which represent the steady states. The Jacobian matrix
associated with this system is given by

J(u, v) =

(
0 1

−b(1− a− 2u) −δ

)
Thus, the Jacobian matrix at the equilibrium point (0, 0) is given by

A(0, 0) =

(
0 1

−b(1− a) −δ

)
which has the characteristics equation

λ2 + λδ + b(1− a) = 0

with the eigenvalues

λ1 =
−δ +

√
δ2 − 4b(1− a)

2
, λ2 =

−δ −
√
δ2 − 4b(1− a)

2
.

Hence, the origin is a stable node for δ2 − 4b(1 − a) ≥ 0, that is,
c2 ≥ 4κ2(1− a). Hence the minimum wave speed cm is then given by
cm = 2κ

√
(1− a).

On the other hand, the Jacobian matrix corresponding to the equi-
librium point (1− a, 0) is given by

A(1− a, 0) =

(
0 1

b(1− a) −δ

)
with the characteristic equation

λ2 + δλ− b(1− a) = 0.

The eigenvalues are obtained as

λ1 =
−δ +

√
δ2 + 4b(1− a)

2
, λ2 =

−δ −
√
δ2 + 4b(1− a)

2
.



Thus, (1− a, 0) is a saddle point. Hence the existence of a physically
meaningful travelling wave originating from the point (1 − a, 0) and
terminating at the origin has been established.

We now obtain the equations of the stable and unstable manifolds
as follows: Let ξ1 and ξ2 be the eigenvectors corresponding to the
eigenvalues λ1 and λ2 respectively. Thus

⇒ ξ1 =

(
−1

δ −
√
δ2 + 4b(1− a)

)
, ξ2 =

(
−1

δ +
√
δ2 + 4b(1− a)

)
.

The general eigensolution is then given by

W = (u(z), v(z))T =(
−C1e

λ1z − C2e
λ2z

C1

(
δ −

√
δ2 + 4b(1− a)

)
eλ1z + C2

(
δ +

√
δ2 + 4b(1− a)

)
eλ2z

)
(8)

where C1 and C2 are arbitrary constants. Hence

dv

du
=−

λ1C1

(
δ −
√
δ2 +4b(1− a)

)
eλ1z+λ2C2

(
δ +
√
δ2 +4b(1− a)

)
eλ2z

λ1C1eλ1z + λ2C2eλ2z
.

Thus, for C1 = 0,

dv

du
= −

(
δ +

√
δ2 + 4b(1− a)

)
=⇒ v(u) = −

(
δ +

√
δ2 + 4b(1− a)

)
u+A,

where A is a constant to be determined. Since v(0) = 0, we obtain the
equation of the stable manifold vsm as

vsm =
(1− a− u)

κ2

[
c+

√
c2 + 4κ2(1− a)

]
(9)

Similarly, the equation of the unstable manifold vum is given by

vum =
(1− a− u)

κ2

[
c−

√
c2 + 4κ2(1− a)

]
(10)

The basin of attraction is given by the region R1 in the uv-plane defined
by

R1 =

{
(u, v) : u = 0, v = 0, v =

(1− a− u)

κ2

[
c−

√
c2 + 4κ2(1− a)

]}
.



The estimated area of this trapping region is

A1 =
(1− a)2

2κ2

[√
c2 + 4κ2(1− a)− c

]
From the system (7), the heteroclinic orbit from (0, 0) to (1− a, 0) satisfies
the equation

dv

du
=
−δv − bu(1− a− u)

v
(11)

Now, we define v = 1
cy, hence we obtain the equation

εyy′ +
y + u(1− a− u)

κ2
= 0 (12)

where y′ = dy
du and ε = 1

c2
<< 1 for c ≥ 3. Now, expanding y as a power

series in ε as
y(u, ε) = y0(u) + εy1(u) + ε2y2(u) + · · ·

and using this in (12) leads to the sequence of equations

O(1) :
y0 + u(1− a− u)

κ2
= 0 (13)

O(ε) : y0y
′
0 +

y1
κ2

= 0 (14)

O(ε2) : y0y
′
1 + y1y

′
0 +

y2
κ2

= 0 (15)

Solving (13) in (14) for y0 and y1, yield

y0 = −u(1− a− u), y1 = κ2u(1− a− u)(2u+ a− 1).

Thus one obtains the approximate equation of the heteroclinic orbit

v = −ε
1
2u(1− a− u) + ε

3
2κ2u(1− a− u)(2u+ a− 1) + · · · (16)

To obtain the travelling wave solution in the physical plane, we use equation
(6) with the change of variable s = z

c . Hence we obtain the equation

εu′′ + bu′ + bu(1− a− u) = 0 (17)

where u′ = du
ds . Equation (17) happens to be a regular perturbation prob-

lem, since the resulting first order equation when ε ≈ 0 satisfies the bound-
ary conditions

lim
z→−∞

u = 1− a



and
lim
z→∞

u = 0.

Thus we expand u in terms of powers of ε as

u(s, ε) = u0(s) + εu1(s) + ε2u2(s) + · · · (18)

Now, using (18) in (17) produces the following sequence of equations

O(1) : u′0 + u0(1− a− u0) = 0 (19)

O(ε) : u′′0 + bu′ + bu1(1− a− 2u0) = 0 (20)

O(ε2) : u′′1 + bu′2 − bu21 + bu2(1− a− 2u0) = 0 (21)

Equation (19) has the general solution

u0(s) =
C(1− a)

C + e(1−a)s
.

Taking u0(0) = 1, noting that u is invariant under the transformation s = z
c ,

we obtain the solution

u0(s) =
1− a

1− ae(1−a)s
.

The solution of (20) subject to the condition u1(0) = 0 is obtained as

u1(s) =
(1− a)e(1−a)s

b
(
1− ae(1−a)s

)2 ln

[
e(1−a)s(

1− ae(1−a)s
)2
]
.

Hence the approximate expression for the travelling wave solution in the
physical plane in terms of z, and thus the space and time variables becomes

u(z) =
1− a

1− ae(1−a)
z
c

+ε
(1− a)e(1−a)

z
c

b
(

1− ae(1−a)
z
c

)2 ln

 e(1−a)
z
c(

1− ae(1−a)
z
c

)2
+ · · · (22)

which is valid for −∞ < z < c
1−a ln

(
1
a

)
. The plot for (22) is depicted on

figure 4(a).



4 Model with density-dependent diffusion

coefficient

Assuming a travelling wave variable of the form z = αx + βy − ct, and
substituting in (4), we obtain the second order ODE

κ2
[
d(u)u′′ + u′2du(u)

]
+ cu′ + u(1− a− u) = 0 (23)

For simplicity, we define d(u) = un and using the transformations u′ =
v, un d

dz = d
dτ , we obtain from (23), the system of first order equations

u′ = unv (24)

v′ = − 1

κ2
[cv + u(1− a− u)]− nun−1v2 (25)

where u′ = du
dτ . The system of equations (24) and (25) has the equilibrium

points (0, 0) and (1−a, 0) for n 6= 1. However, for n = 1, the system has the
equilibrium points (0, 0), (1−a, 0) and (0,− c

κ2
). Standard phase-plane anal-

ysis shows that (0, 0) is a nonlinear stable node, while the points (1− a, 0)
and (0,− c

κ2
) are saddle points. It is possible to have a heteroclinic orbit

linking (0, 0) and (1 − a, 0), thus establishing the existence of a travelling
wave solution for the model equation with density-dependent diffusion co-
efficient. Another possible heteroclinic connection is that along the v−axis
from (0,− c

κ2
) to (0, 0) as can be seen from figure 2. The equation of the

unstable manifold for the case with n = 1 is given by

vdum =
c

κ2

(
u

1− a
− 1

)
(26)

Using (26), the basin of attraction is the region R2 defined by

R2 =

{
(u, v) : u = 0, v = 0, v =

c

κ2

(
u

1− a
− 1

)}
.

This region has the area A2 = c(1−a)
2κ2

squared unit.
The equation of the heteroclinic orbit in the moving frame is given by

dv

du
= −cv + u(1− a− u)

κ2unv
− nv

u
(27)



Substituting v = 1
cy in (27) yields the equation

εyy′ +
y + u(1− a− u)

κ2un
+
εny2

u
= 0 (28)

Now, expanding y in terms of powers of ε as

y = y0(u) + εy1(u) + ε2y2(u) + · · ·

and using it in (28) leads to the following sequence of equations.

O(1) :
y0 + u(1− a− u)

κ2un
= 0 (29)

O(ε) : y0y
′
0 +

y1
κ2un

+
ny20
u

= 0 (30)

O(ε2) :
y2
κ2un

+ y0y
′
1 + y1y

′
0 +

2ny0y1
u

= 0

From (29),
y0(u) = −u(1− a− u).

Thus, from (30), one obtains

y1(u) =−κ2un
[
y0y
′
0 +

ny20
u

]
=κ2un+1(1−a−u) [(n+ 2)u− (n+ 1)(1− a)].

The equation of the heteroclinic orbit from the point (1−a, 0) to the point
(0, 0) is then given by

v(u, ε) =−ε
1
2u(1−a−u)+ε

3
2κ2un+1(1−a−u)[(n+ 2)u− (n+ 1)(1− a)]+· · ·

(31)
When n = 0, the heteroclinic orbit (31) reduces to (16), the heteroclinic
orbit for the constant diffusion model. The travelling wave solution in the
the physical plane can be determined from (20) using the transformation
s = z

c , with d(u) = un, resulting into the equation

εκ2
[
unu′′ + nun−1u′2

]
+ u′ + u(1− a− u) = 0 (32)

In a similar vein, expanding u in terms of powers of ε and substituting in
(32), for the case with n = 1 produces the sequence of equations

O(1) : u′0 + u0(1− a− u) = 0 (33)

O(ε) : u′1 + κ2
[
u0u

′′
0 + u′20

]
+ u1(1− a− 2u0) = 0 (34)



The leading order solution (33), subject to the condition u0(0) = 1, as
earlier used becomes

u0(s) =
1− a

1− ae(1−a)s

while the solution of equation (34) produces

u1(s) =
κ2a(1− a)e(1−a)s

B(a, s)

{
ln

[
e(1−a)s

1− a
B(a, s)

]
+

3

B(a, s)
− 3

a(1− a)

}
,

where B(a, s) = 1 − ae(1−a)s. Hence we have the approximate travelling
wave solution

u(z)=
1− a
B(a, z)

+ε
κ2a(1− a)e(1−a)

z
c

B(a, z)

{
ln

[
e(1−a)

z
c

1− a
B(a, z)

]
+

3

B(a, z)
− 3

a(1− a)

}
+· · ·

where B(a, z) = 1 − ae(1−a) z
c ,−∞ < z < c

1−a ln
(
1
a

)
. The result is plotted in

figure 4(b).

5 Results and Discussions

In this work, we have considered two Mathematical models for the dispersal of an
animal species on land. One method of analysing such equations is the travelling
wave procedure, which has been used in this case. The two models have been shown
to admit travelling wave solutions through the use of phase plane analysis. The
density-dependent diffusion model was found to undergo a saddle-node bifurcation
for n = 1, when the diffusion coefficient takes the simple form d(u) = un. The
additional equilibrium point (0,− c

κ2 ) is a saddle, with the vertical axis of the
uv−plane serving as the unstable manifold. Trajectories from the neighbourhood
of (0,− c

κ2 ) either terminate there or enter (0, 0). Similarly, trajectories from the
neighbourhood of (1 − a, 0) can only terminate at (0, 0). Hence we can have a
heteroclinic connection form (1 − a, 0) to (0, 0). Another possible connection is
that from (0,− c

κ2 ) to (0, 0), along the v−axis which forms part of the boundary
of the basin of attraction for (0, 0), as can be seen in figure 2. The heteroclinic
orbits on the moving frame are shown in figures 3 and 4 for a = 0.01 and a = 0.3
respectively. The orbit corresponding to the density-dependent model for n = 1
is slightly longer than that of the model with constant diffusion coefficient as
depicted on figures 3 and 4. The difference in the sizes of the orbits is due to the
additional equilibrium point created as a result of the bifurcation. The change
in the value of the parameter a has no significant effects on the phase-portraits.
Putting n = 0 into (31), we recover (16), the expression for the heteroclinic orbit for
the constant diffusion model Figures 5(a) and (b) are analogues of the connections



shown in figure 3 in the physical frame in two-dimensions, generated using the
same parameter values. The areas of the basins of attraction for the two models
were also computed for a = 0.01, k =

√
2 and c = 2k

√
(1− a) and the basin of

attraction corresponding to the density-dependent diffusion model (A2 = 0.697
sq. unit) for n = 1 is clearly greater than that with constant diffusion coefficient
(A1 = 0.286 sq. unit).

6 Conclusions

Mathematical models for the dispersal of an animal species in a terrestrial habitat
are constructed and analysed. Travelling wave solutions were sought in both cases,
and the results show the existence of such solutions in each case. Furthermore,
approximate equations of the heteroclinic orbits for the travelling wave were com-
puted. More importantly, the basins of attraction for the equilibrium points were
determined and their areas computed. The result indicate that the trapping region
is directly proportional to the wave speed in the case with density-dependent coef-
ficient of diffusion for the particular case with n = 1, while the case with constant
diffusion is also a function of the wave speed. A saddle-node bifurcation occurs in
the density-dependent diffusion coefficient model for n = 1 as can be seen in figure
2 when compared with figure 1. Figures 1 and 2 also show the phase-portraits for
the two models, while figures 3, 4 and 5 show the heteroclinic connections in the
moving coordinates and on the physical plane respectively.

References

[1] J. Billingham and A.C. King, Wave Motion, Cambridge University Press,
United Kingdom, 2000.

[2] L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engi-
neers, Birkhauser, Boston, USA, 2005.

[3] A.C. Fassoni, L.T. Takahashi and L.J. dos Santos, Basins of Attraction of the
Classic Model of Competition Between Two Populations, Ecological Complex-
ity, 2014, 18 39-48.

[4] M. Kot, Elements of Mathematical Ecology, Cambridge University Press,
United Kingdom, 2001.

[5] M.B.A. Mansour, Accurate Computation of Travelling Wave Solutions of
Some Nonlinear Diffusion Equations, Wave Motion, 2007, 44 222-230.

[6] M.B.A. Mansour, Travelling Wave Solutions of a Nonlinear Reaction-
Diffusion-Chemotaxis Model for Bacterial Pattern Formation, Applied Math-
ematical Modelling, 2008, 32 240-247.



[7] J.D. Murray, Mathematical Biology I: An Introduction, Springer Verlag, New
York, 2002.

[8] J.N. Ndam, J.P. Chollom and T.G. Kassem, A Mathematical Model of Three-
species Interactions in an Aquatic Habitat, ISRN Applied Mathematics, 2012,
11pp.

[9] A. Okubo and S.A. Levin, Diffusion and Ecological Problems: Modern Per-
spectives, Springer, New York, USA, 2001.

Figure 1: Phase-portrait and trajectories for model with constant dif-
fusion for a = 0.01, k =

√
2 and c = 2k

√
(1− a)



Figure 2: Phase-portrait and trajectories for model with density-
dependent diffusion for a = 0.01, k =

√
2 and c = 2k

√
(1− a)

Figure 3: Heteroclinic orbits for the constant and density-dependent
diffusion models for a = 0.01, k =

√
2 and c = 2k

√
(1− a)



Figure 4: Heteroclinic orbits for the constant and density-dependent
diffusion models for a = 0.3, k =

√
2 and c = 2k

√
(1− a)

(a) (b)

Figure 5: 3D heteroclinic orbits for (a) constant diffusion and (b)
density-dependent diffusion models for a = 0.01, k =

√
2 and c =

2k
√

(1− a)


	Introduction
	Mathematical formulation
	Travelling wave solution and stability analysis
	Model with density-dependent diffusion coefficient
	Results and Discussions
	Conclusions

