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Abstract In this note we construct a family of recurrence generated
sigmoidal logistic functions based on the Verhulst logistic function.

We prove estimates for the Hausdorff approximation of the Heavi-
side step function by means of this family. Numerical examples, illus-
trating our results are given.

Keywords Sigmoidal functions · Logistic functions · Heaviside step
function · Hausdorff distance · Upper and lower bounds.

1 Introduction

The logistic function belongs to the important class of smooth sig-
moidal functions arising from population and cell growth models.

The logistic function was introduced by Pierre François Verhulst
[45]–[47], who applied it to human population dynamics. Verhulst
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proposed his logistic equation to describe the mechanism of the self-
limiting growth of a biological population. His equation was rediscov-
ered by A. G. McKendrick [18] for the bacterial growth in broth and
was tested using nonlinear parameter identification.

Since then the logistic function finds applications in many scien-
tific fields, including biology, ecology, population dynamics, chemistry,
demography, economics, geoscience, mathematical psychology, prob-
ability, sociology, political science, financial mathematics, statistics,
fuzzy set theory, insurance mathematics to name a few [1], [2], [52],
[51], [4], [15], [22], [23], [24], [21], [44], [48], [49].

Logistic functions are also used in artificial neural networks [3],
[6]–[8], [9], [10], [12], [13], [11], [14]. Constructive approximation by
superposition of sigmoidal functions and the relation with neural net-
works and radial basis functions approximations is discussed in [10].
Any neural net element computes a linear combination of its input
signals, and uses a logistic function to produce the result; often called
“activation” function [19], [20] .

Another application area is medicine, where the logistic function
is used to model the growth of tumors or to study pharmacokinetic
reactions.

Definition 1. Define the logistic (Verhulst) function v on R as

v0(k; t) =
1

1 + e−kt
. (1)

Note that the logistic function (1) has an inflection at its “center”
(0, 1/2) and its slope κ at 0 is equal to k/4.

Definition 2. The (basic) step function is:

h0(t) =


0, if t < 0,

1/2, if t = 0,

1, if t > 0,

usually known as Heaviside step function.



Definition 3. [16], [17] The Hausdorff distance (the H–distance) [16]
ρ(f, g) between two interval functions f, g on Ω ⊆ R, is the distance
between their completed graphs F (f) and F (g) considered as closed
subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (2)

wherein ||.|| is any norm in R2, e. g. the maximum norm ||(t, x)|| =
max{|t|, |x|}; hence the distance between the points A = (tA, xA), B =
(tB, xB) in R2 is ||A−B|| = max(|tA − tB|, |xA − xB|).

The Hausdorff approximation of the Heaviside step function by logistic
functions of the form (1) is considered in [2] and the following is proved:

Theorem A. [2] The H-distance d = ρ(h0, s0) between the Heavi-
side step function h0 and the Verhulst function v0 can be expressed in
terms of the rate parameter k for any real k ≥ 2 as follows:

ḋl(k) =
1

k + 1
< d(k) <

ln(k + 1)

k + 1
, (3)

dl(k) =
ln(k + 1)

k + 1
− ln ln(k + 1)

k + 1
< d(k) <

ln(k + 1)

k + 1
= dr(k), (4)

or

d(k) =
ln(k + 1)

k + 1
(1 +O (ε(k))) , ε(k) =

ln ln(k + 1)

ln(k + 1)
. (5)

More precise estimates for the Hausdorff approximation of the
Heaviside step function by Verhulst logistic function is obtained in
[30].

Theorem B. [30] For the Hausdorff distance d = ρ(h0, s0) be-
tween the Heaviside step function h0 and the sigmoidal function v0 the
following inequalities hold for k ≥ 2:

d̃l =
ln(k + 1)

k + 1
− ln ln(k + 1)

(k + 1)
(

1 + 1
ln(k+1)

) < d

<
ln(k + 1)

k + 1
+

ln ln(k + 1)

(k + 1)
(

ln ln(k+1)
1−ln(k+1)

− 1
) = d̃r.

(6)



2 Main Results

Let us consider the following family of recurrence generated sig-
moidal logistic functions

vi+1(t) =
1

1 + ki+1e−k(t+vi(t))
, i = 0, 1, 2, . . . , (7)

with

vi+1(0) =
1

2
, i = 0, 1, 2, . . . , (8)

based on the Verhulst logistic function v0(t).

From (8) we have ki+1 = e
k
2 for i = 0, 1, 2, . . . ,.

Denoting the number of recurrences by p, we can consider various
cases.

Special case 1. Let p = 1. In this case we find from (7)–(8):

v1(t) =
1

1 + e
k
2 e−kte

−k
1+e−kt

(9)

The H-distance d1 = ρ(h0, v1) between the Heaviside step function h0
and the sigmoidal function v1 satisfies the relation:

v1(d1) =
1

1 + e
k
2 e−kd1e

−k
1+e−kd1

= 1− d1. (10)

The following theorem gives upper and lower bounds for d1 = d1(k)

Theorem 2.1 The H-distance d1(k) between the function h0 and
the function v1 can be expressed in terms of the rate parameter k for
any real k ≥ e as follows:

dl1 =
1

1
4
(k2 + 4k + 16)

< d1 <
ln 1

4
(k2 + 4k + 16)

1
4
(k2 + 4k + 16)

= dr1 . (11)

Proof. We define the functions

F1(d1) =
1

1 + e
k
2 e−kd1e

−k
1+e−kd1

− 1 + d1 (12)



Figure 1: The functions F1(d1) and G1(d1) for k = e.

G1(d1) = −1

2
+

1

16
(k2 + 4k + 16)d1. (13)

From Taylor expansion

1

1 + e
k
2 e−kd1e

−k
1+e−kd1

− 1 + d1 − (−1

2
+

1

16
(k2 + 4k + 16)d1) = O(d21)

we see that the function G1(d1) approximates F1(d1) with d1 → 0 as
O(d21) (cf. Fig.1).

In addition G′1(d1) > 0 and for k ≥ e

G1(dl1) < 0; G1(dr1) > 0.

This completes the proof of the inequalities (11).

Some computational examples using relations (10) and (11) are
presented in Table 1.

Special case 2. Let p = 2. In this case we find from (7)–(8):

v2(t) =
1

1 + e
k
2 e−kte

−k

1+e
− k

2 e−kte
−k

1+e−kt



k dl1 d1 computed by (10) dr1
e 0.116747 0.247348 0.250743
3 0.108108 0.23192 0.2405
10 0.025641 0.0743631 0.0939375
20 0.00806452 0.0297465 0.0388732
50 0.00147275 0.00731424 0.00960327

Table 1: Bounds for d1(k) computed by (10) and (11) for various rates
k

The H-distance d2 = ρ(h0, v2) between the Heaviside step function h0
and the sigmoid function v2 satisfies the relation:

v2(d2) =
1

1 + e
k
2 e−kd2e

−k

1+e
− k

2 e−kd2e
−k

1+e−kd2

= 1− d2.

The following theorem gives upper and lower bounds for d2 = d2(k)

Theorem 2.2 The H-distance d2(k) between the function h0 and
the function v2 can be expressed in terms of the rate parameter k for
any real k ≥ e as follows:

dl2 =
1

1
16

(k3 + 4k2 + 16k + 64)
<d2<

ln 1
16

(k3 + 4k2 + 16k + 64)
1
16

(k3 + 4k2 + 16k + 64)
= dr2 .

(14)

Proof. We define the functions

F2(d2) =
1

1 + e
k
2 e−kd2e

−k

1+e
− k

2 e−kd2e
−k

1+e−kd2

= 1− d2 (15)

G2(d2) = −1

2
+

1

64
(k3 + 4k2 + 16k + 64)d2. (16)

From Taylor expansion

F2(d2)−G2(d2) = O(d22)



Figure 2: Reaction rate k = e. The graphics: Verhulst function -
v0 (thick), recurrence generated function - v1 (blue) and recurrence
generated function - v2 (dashed); d1 = 0.247348, d2 = 0.224001.

we see that the function G2(d2) approximates F2(d2) with d2 → 0 as
O(d22).

In addition G′2(d2) > 0 and for k > e

G2(dl2) < 0; G2(dr2) > 0.

This completes the proof of the inequalities (14).

The recurrence generated sigmoidal logistic functions v0(t), v1(t)
and v2(t) are visualized on Fig. 2



Figure 3: Module in CAS Mathematica.



Figure 4: Module in CAS Mathematica.



Theorem 2.3 For given p, the H-distance dp(k) between the func-
tion h0 and the function vp can be expressed in terms of the rate pa-
rameter k for any real k ≥ e as follows:

dlp =
1

1
22p

(
kp+1 +

p∑
i=0

22(i+1)kp−i

) < dp <

<

ln

(
1

22p

(
kp+1 +

p∑
i=0

22(i+1)kp−i

))
1

22p

(
kp+1 +

p∑
i=0

22(i+1)kp−i

) = drp . (17)

Proof. We note that the function

Gp(dp) = −1

2
+

1

22(p+1)

(
kp+1 +

p∑
i=0

22(i+1)kp−i

)
dp.

approximates Fp(dp) with dp → 0 as O(d2p).
In addition G′p(dp) > 0 and for k ≥ e

Gp(dlp) < 0; Gp(drp) > 0.

This completes the proof of the inequalities (17).

Remarks. A function which is close to the step function is the cut
(or ramp) function.

About approximation of the cut function by logistic and squashing
functions see, [6], [5], [15], [25], [28].

The Hausdorff approximation of the Heaviside interval step func-
tion by the logistic and other sigmoid functions is discussed from var-
ious computational and modelling aspects in [30] (see also [26]–[43]).

The most frequently used non-linear activation function is a sig-
moid function, which is modified from a binary step function and is in
a form of [50]:

f(t) =
1

1 + e−
t
τ



where τ is a tunable number and referred as the temperature of the
neuron.

Based on the methodology proposed in the present note, the reader
may formulate the corresponding approximation problems on his/her
own.

3. Conclusions

To achieve our goal, we obtain new sharper estimates for the H-
distance between a step function and its best approximating family
of recurrence generated sigmoidal logistic functions based on the Ver-
hulst logistic function.

Numerical examples, illustrating our results are given.
We propose a software module within the programming environ-

ment CAS Mathematica for the analysis of the considered family of
logistic functions.

The module offers the following possibilities:
- generation of the logistic functions under user defined values of

the reaction rate k and number of recursions p;
- calculation of the H-distance dp = ρ(h0, vp), p = 0, 1, 2, . . . , p

between the Heaviside function h0 and the sigmoidal functions
v0, v1, v2, . . . , vp;

- software tools for animation and visualization.
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