
Master’s theses Biomath Communications 3 (2016)

Biomath Communications

www.biomathforum.org/biomath/index.php/conference

A modeling approach for cell growth

based on enzyme kinetics

Stanko Dimitrov
University of Sofia, Faculty of Mathematics and Informatics,

email: stankod@fmi.uni-sofia.bg

Abstract

The enzyme kinetics reaction scheme of single enzyme-sub-
strate dynamics, originally proposed by V. Henri, is consid-
ered. The system of ODEs induced by the reaction scheme is
compared to two approximate models, namely the Michaelis-
Menten model and the model of exponential decay. Validity
conditions for the Michaelis-Menten model are briefly reviewed.
A case specific for “superefficient enzymes” is used as a setting
for a comparison between the three models via computational
experiments. The case study proves the importance of validat-
ing the applicability of the approximate model.

A novel cell growth model is proposed and analyzed. The
approach of model development is to make use of the original
Henri enzyme kinetics law in the context of metabolic processes
in living cells, namely cell growth. Two approximations corre-
sponding to different cell growth phases are introduced in order
to study the model analytically.
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1 Introduction

Since its discovery around 1900, the Henri enzyme kinetics law has
been intensively applied in many fields of life sciences. Two types (or
stages) of its application can be distinguished: a first type of applica-
tions in biotechnological (fermentation) processes where the enzymes
are often produced by bacterial cells, and a second type of applications
in metabolic processes in living cells.

The first type of applications are often denoted as in vitro whereas
the second one—in vivo. During in vitro processes one is usually
interested in the transformation of as much as possible quantity of
substrate into product using thereby as little as possible quantity of
enzymes. Thus, the ratio enzyme/substrate in vitro is usually very
small, whereas in vivo this may not be the case. For the in vitro case
the approximate Michaelis-Menten model has been proposed together
with a simple protocol for the calculation of the two parameters in-
volved in the model (Vmax and Km).

The Michaelis-Menten model has proved to be extremely useful and
has become very popular amongst biological scientists. Plausible bio-
chemical mechanisms (known as Briggs-Haldane interpretations) have
been found also known as (standard) quasi-steady-state approxima-
tion (sQSSA) criteria for the validity of the Michaelis-Menten model.

With the necessity of considering in vivo processes, three approaches
can be possibly followed. One is to extend the applicability (validity)
of the Michaelis-Menten model by finding more general criteria than
the standard enzyme/substrate ratio criterion (the sQSSA condition),
such as the so-called rQSSA and the tQSSA criteria. A disadvantage
of this approach is that these criteria are more complex to check and
involve the computation of new parameters, thereby still producing
often very rough results.

Another approach could be to make use of other approximate phe-



nomenological models together with corresponding validity criteria,
such as the first order decay model. As demonstrated in Section 3.1
in certain situations the decay model can give a better approximation
than the Michaelis-Menten model.

A third approach would be to make use of the original (exact)
Henri enzyme kinetics law and the induced system of ODEs. The
proponents of the approximate models underline that the Henri law
induced system of ODEs is too complex to use in real applications and
cumbersome to handle. This could be overcome to a certain extent
with the use of powerful contemporary mathematical and computa-
tional tools to make the exact Henri model easily applicable in prac-
tice. In particular, familiar computer algebra systems (CAS) such as
Mathematica and MATLAB can be used to handle the ODE system in-
duced by the Henri law in order to conduct numerical experiments. To
efficiently apply the original Henri law, it is necessary to compute the
three Henri’s rate constants from time-course kinetic measurements
using computer simulations. However, such time-course measurement
data are usually not explicitly available in the literature. In the best
case some graphs are published together with the computed Michaelis
constant Km which is of little use for the computation of the three
Henri rate constants.

We pose a case for the use of the aforementioned third approach
in the modeling of metabolic processes in living cells. Namely, the
original Henri enzyme kinetics law is used as a foundation for the
development of a cell growth model. The proposed model is studied
analytically and computationally in Section 4.

The proposed cell growth model is further supported by evidence of
the advantages in use of exact, mechanistic models such as the HMM
model (Section 3).

Section 2 contains a review of the original Henri-Michaelis-Menten
reaction scheme (briefly denoted as HMM-scheme) and the approxi-
mate Michaelis-Menten model (MM-model). The HMM reaction scheme
induces (via the mass action law) a system of ordinary differential
equations (denoted HMM-system) while the approximate MM-model



is derived from the HMM-system using well known assumptions ([3],
[4], [5], [6], [16], [18], [21], [22], [28]). The criteria for the validity of
the MM-model is briefly commented on.

Section 3 is devoted to computational experiments that reveal
some details on the conditions under which the approximate Michaelis-
Menten model is adequate. The analysis is based on a well-defined
criterion for the validity of the model, as well as general analysis of
its dynamics based on the ODE system. Cases where the biomass
solutions of the two models are close, but the suggested dynamics
differ significantly, are also presented.

The obtained results support the use of reaction schemes, such as
the one proposed by V. Henri in the development of dynamical models.
Furthermore, the analysis of these models provides opportunities for
better understanding of the underlying physical processes.

Section 4 is devoted to the analytical and computational study
of a novel cell growth model. The model is inspired by the use of
the original HMM reaction scheme in the field of enzyme kinetics.
Similarities in approaches of modeling enzyme kinetics processes and
cell growth dynamics are taken into consideration in the development
of the model. Further analysis shows the applicability of such ap-
proaches, as well as the invaluable insight into the dynamics and me-
chanics of the underlying physical processes they provide.

The computational experiments and case studies on enzyme kinet-
ics, that supported and shaped the development of the novel model
(Section 4), have been part of previous research [9], [10]. Section 2
and Section 3 are based on the work from reference [10]. Section 4
consists entirely of unpublished work and draws attention to the mod-
eling of cell growth. The introduced model is studied analytically and
numerically, supporting the analysis with many figures of numerical
solutions, nullclines, phase portraits, etc.



2 Enzyme kinetics basic models

2.1 Henri’s reaction scheme

The following reaction scheme of simple enzyme-substrate dynam-
ics, where two fractions of the enzyme (free and bound) are involved,
has been proposed by Victor Henri [8], [13]–[14]:

S + E
k1−→←−
k−1

C
k2−→ P + E. (1)

Henri’s reaction scheme (1) describes the reaction mechanism be-
tween an enzyme E with a single active site and a substrate S, form-
ing reversibly an enzyme-substrate complex C, which then yields ir-
reversibly a product P . Reaction scheme (1) says that during the
transition of the substrate S into product P the enzyme E bounds
the substrate into a complex C having different properties than the
free enzyme and thus being necessarily considered as a separate sub-
stance.

Denoting the concentrations s = [S], e = [E], c = [C], p = [P ]
and applying the mass action law to Henri’s reaction scheme (1) we
obtain the following system of ODEs:

ds/dt = −k1es+ k−1c,
de/dt = −k1es+ (k−1 + k2)c,
dc/dt = k1es− (k−1 + k2)c,
dp/dt = k2c,

(2)

to be further called the HMM-system—in tribute to V. Henri, as
well to L. Michaelis and M. Menten [21]. If the three rate constants
k1, k−1, k2 are known, system (2) can be treated as a Cauchy problem
with initial conditions s(0) = s0 > 0, e(0) = e0 > 0, c(0) = 0, p(0) =
0.

In practice, the HMM-system rate constants k1, k−1, k2 are often
not known and have to be determined for every enzyme-substrate pair.



The contemporary approach to this task is to consider the rate con-
stants as parameters in the dynamic HMM-system (2) and to compute
them by fitting the solutions of the system to time course experimen-
tally measured data [10].

2.2 Michaelis-Menten equation

Applying the quasi-steady-state assumption (QSSA) to HMM-system
(2), one derives the following approximate equations for the substrate
rate ds/dt and the complex c [5], [21], [22]:

c =
e0s

Km + s
, (3)

ds

dt
= − Vmaxs

Km + s
= −µ(s), (4)

where the right-hand side function µ(s) = Vmaxs/(Km+s) is known as
“specific growth function” in cell growth modeling [19]. The solution
sm of equation (4) is an approximation of the solution s of system (2).
The QSSA is reasonably applied, e.g. when the ratio [E]/[S] is small so
that fermentation continues for a considerably long time interval while
the concentration c = [C] of the bound enzyme is nearly constant.
This can be achieved e.g. when the condition e0 � s0 holds. Let us
also remind that under the validity of QSSA the complex concentration
c = [ES] is expressed in terms of the MM-substrate concentration via
equation (3).

In their paper, Michaelis and Menten discuss in detail Henri’s re-
action scheme and equation (4) known as Michaelis-Menten equation
to be further denoted as MM-model [21]. In addition, Michaelis and
Menten proposed a protocol for the practical calculation of the con-
stants Vmax and Km in ODE (4). The constant Km is known as
Michaelis constant [8], [27].

The MM-equation (4) can be written in the form:

ds

dt
= − Vmaxs

Km + s
= − Vmax

Km/s+ 1
,



showing that for large values of s the right-hand side is close to
the constant −Vmax, hence, the substrate uptake rate |ds/dt| is nearly
equal to the constant Vmax.

Equation (4) produces a good approximation sm for s under cer-
tain conditions (sometimes called validity criteria) [3], [5], [11], [12],
[18], [28], [24], [25]. Thus, the condition e0 � s0 assures good approx-
imation and is ubiquitous for many fermentation and biotechnological
processes, but may not be present, as in living cells [1], [26].

2.3 Relations between the rate parameters

Figure 1: Graphics of the substrate dynamics according to the HMM-system (2) and MM-model
(4). The rate constants of system (2) are k1 = 2.62, k−1 = 0.1, k2 = 1.25, initial conditions:
s0 = 1, e0 = 1.5 (the system is dimensionless); the parameters of model (4) are Km = (k−1 +
k2)/k1 = 0.51526, Vmax = k2e0 = 1.875.

In (Figure 1) the substrate uptake s is visualized in two different
ways. The two graphics present the approximate solution sm to the
MM-model (4) as well as the original solution s of the HMM-system
(2). In this example the kinetic parameters are chosen so that the



validity conditions of the MM-model do not hold, and the difference
of the solutions for the substrate of the two systems is visible. In order
to test whether the validity conditions of the approximate model do
hold, the two solutions are compared.

In order to correctly compare the solutions s and sm, one has to
establish certain consistency relations between the parameters in the
MM-equation and the HMM-system. From the derivation of the MM-
equation, see e.g. [22], we know that the parameters in model (4)
can be expressed by the parameters in system (2) by means of the
relations:

Vmax = k2e0, Km = (k−1 + k2)/k1. (5)

On the other hand, the three parameters in system (2) cannot be
uniquely determined by the two parameters in model (4). The fol-
lowing computational examples show how the approximate substrate
concentration solution sm to the MM-equation may look like depend-
ing on the initial values of the substrate s0 and the enzyme e0.

According to the MM-model we have ds/dt = Vmaxs/(Km + s).
The two constants Vmax and Km can be experimentally determined
following the MM-protocol. If the MM-model is valid we have Vmax ≈
k2e0. Using this expression one can calculate the value kcat = Vmax/e0.
Hence kcat ≈ k2 if the validity conditions for the MM-model take place.

Assuming that k2 is a universal rate constant for a given specific
reaction, then it should not depend on whether the validity conditions
take place or not (e.g. if k2 is computed in an experiment with e0 � s0,
it should be the same constant in another experiment with e0 > s0).

Thus, we may assume kcat ≈ k2. This gives a method for evaluating
the HMM-rate constant k2. However, it is not possible to obtain any
information about the HMM-rate parameters k1, k−1 on the basis of
the MM-model, respectively, the MM-protocol.



3 Case Study of the use of the Henri-

Michaelis-Menten model

3.1 Computational examples: model comparison

In this section, the results of several numerical studies aiming at the
comparison of the substrate dynamics of the two models are presented
(2), (4). The values of the dimensionless parameters K = Km/s0

and ε = e0/s0 play an important role in our analysis, because they
can significantly influence the behavior of the system. The values
of the two system characteristic parameters K, ε are varied in the
numerical study, in order to present results for the cases when K ≤ 1
and ε � 1, ε > 1, as well as K � 1 and ε � 1, ε > 1. The values
of the HMM rate constants k1, k−1, k2 are kept the same for all cases
as follows: k1 = 0.1, k−1 = 0.01, k2 = 10. The Michaelis constant
consistent with these values, according to relations (5), is equal to:
Km = (k−1 + k2)/k1 = 100.1.

3.1.1 Criterion for good approximation

An important requirement for the validity of the MM-model (4) is
the following condition:

k2e0

k1(s0 +Km)2
=

(
e0

s0 +Km

)(
1

1 + (k−1/k2) + (s0k1/k2)

)
� 1. (6)

Condition (6) can be derived from the relation between the esti-
mates of two timescales tc and ts ([18], [22], ch. 6.2). The timescale
tc corresponds to the faster reaction, involving the enzyme and the
complex. Complex formation is the most significant process during
this timescale. The longer timescale, ts, corresponds to the product
synthesis and substrate utilization. It is natural to assume tc � ts,
which in turn leads to criterion (6).

The condition e0 � s0 implies criterion (6), but in case when
e0 � s0 does not hold, the MM-model could still be a good approxi-
mation if Km is large enough (Km � s0 and also k−1 � k2). In order



to provide a more comprehensive explanation of this statement, we
should consider the non-dimensionalized system proposed in [22], as
well as the form of the MM-model under the following conditions:

τ = k1e0t, u(τ) = s(t)/s0, v(τ) = c(t)/e0,
λ = k2/(k1s0), K = Km/s0, ε = e0/s0,

du/dτ = −u+ (u+K − λ)v, (7)

εdv/dτ = u− (u+K)v, u(0) = 1, v(0) = 0. (8)

First, the dynamics of v can be summarized as follows: v increases
from t = 0 until it reaches its maximum at v = u/(u + K), after
that it decreases back to 0. An important point is that if K is large
then the maximum of v will be smaller. Furthermore, larger K indi-
cates either larger k2 and/or larger k−1 values in comparison to s0k1.
The most common ranges of the values of k2 and k1 are considered
to be k2 ∈ [103, 106]s−1, k1 ∈ [107, 1010]m−1s−1 from many sources
(such as [2], [29], [32]). Some authors ([29], [23]) also state that for
“superefficient enzymes” (or enzymes with perfect kinetics) the rate-
limiting step is the substrate-enzyme association step. Such enzymes
are thought to have reached kinetic perfection or catalytic perfection
[30], and that k2 � k−1 holds for them [29]. Additionally, in certain
rare cases the concentration of substrate is very small in comparison
to the available enzyme [1]. Such cases may include formation of cel-
lular micro-compartments, enzymatic activity in mammalian muscle
tissue and others [1]. In these cases the concentration of substrate
can even reach values s0 � k2/k1. Assuming that the following holds
for some of the cases we study: (1) the substrate concentration is
sufficiently low, so that k2 � s0k1, (2) the formed enzyme-substrate
complex breaks down to product and enzyme faster than it dissoci-
ates to substrate and enzyme, thus k2 � k−1. For the enzymes under
consideration the rate-limiting step of their reactions is the substrate-
enzyme association step and due to their catalytic perfection a small
amount of complex is present during the whole process.



It should be noted that for the case studies in the following section
we have used values of the kinetic parameters different than the ones
derived from real experiments for convenience and simplicity. How-
ever, the conditions we rely on (k2 � s0k1, k2 � k−1) are kept valid
when examining the case K � 1 and we argue that parameters close
to the ranges observed in real experiments exist, based on the afore-
mentioned statements.

We could also rewrite the Michaelis-Menten model (4) under the
assumptions K � 1, k−1 � k2 in the following form:

ds

dt
= − Vmaxs

Km + s
= − k2e0s

k−1+k2
k1

+ s
= − k1k2e0s

k−1 + k2 + k1s
∼ −k1e0s.

The obtained form suggests a much simpler reaction and a negligible
role of the intermediate complex. Thus, the product formation is
only limited by the kinetic constant k1. Also, the derived equation is
identical to the exact substrate ODE from system (2) if we assume
e = e0, c ∼ 0, which would be natural given the kinetic parameter
assumptions we have made.

3.1.2 The exponential decay model

We may argue that under the conditions discussed above the sec-
ond terms in the non-dimensionalized system (7–8) are almost 0. Sys-
tem (7–8) can be approximated as follows:

du/dτ = −u, dv/dτ =
u

ε
; u(0) = 1, v(0) = 0. (9)

The solution u of this dynamical system is identical to the solution
sd of the substrate dynamics induced by the simple reaction scheme:

S + E
k−→P + E, (10)

wherein S is the substrate, E is the enzyme and P is the product. Re-
action scheme (10) says, differently to reaction scheme (1), that during
the transition of the substrate S into product P the enzyme E does



not bound the substrate into a complex. Applying the mass action
law, assuming e = [E] constant, the kinetic scheme (10) leads to the
following “exponential decay” differential equation for the substrate
concentration sd = [S]:

dsd
dt

= −kesd. (11)

Solving the Cauchy problem related to equation (11), having set
e = e0, we obtain k = k1. Indeed, the solution of equation (11) is
sd(t) = s0e

−e0kt. If we then solve the Cauchy problem (9), we would
obtain s(t) = s0e

−e0k1t after converting it back to the initial variables.
Our analysis shows that model (11) deserves to be included in the

comparison of the two models (2), (4). We shall further show that
under the conditions K � 1, k−1 � k2 the three models (2), (4), and
(11) do indeed provide almost identical results and that the substrate
solution of the MM-model may provide a good approximation even
though e0 � s0 does not necessarily hold.

3.1.3 Computational examples: two cases

Case 1. K ≈ 1 (s0 ≈ Km) (also valid for the range K ≤ 1
(s0 ≥ Km)).

Computational example 1.1. In this example the MM- HMM-
solutions for the substrate are close when ε is small (Figure 2).

The values of the initial conditions used in the models are as
follows: s0 = 100, e0 = 0.1, c0 = 0, p0 = 0. The values of the
parameters in model (4) are consistent with the initial conditions
and rate parameters in system (2) and are calculated using (5) as
Vmax = k2e0, Km = (k−1 + k2)/k1. The parameter k in the “expo-
nential decay” differential equation (11) is set to be equal to k1 as
derived in the previous section. In all the examples that follow, only
s0 and e0 will vary, all the other parameters of the model will have
the same values as in this example or they will be calculated using the
corresponding s0, e0.
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Figure 2: The solutions of the substrate (for models (2), (4), (11)) and the complex (for models
(2), (4) ) in the case ε = 10−3 � 1. Kinetic parameter values: k1 = 0.1, k−1 = 0.01, k2 =
10,Km = (k−1 + k2)/k1 = 100.1, Vmax = k2e0 = 1; initial conditions: s0 = 100, e0 = 0.1,
c0 = 0, p0 = 0. Under these conditions the MM-model clearly serves as a good approximation of
the exact HMM-system.

This numerical example demonstrates that when the condition
ε � 1 holds then the MM-model (4) can be a very good approxima-
tion of the original HMM-system (2). Note that in this example the
Michaelis constant Km used for the computation of the approximate
MM-solution is derived from the HMM-rate parameters k1, k−1, k2.
This means that both models describe the process dynamics using



equivalent rate constants and, since we consider the HMM-system to
be true, this implies that the approximate model is also valid under
the assumption ε� 1. Our next numerical examples aim to examine
what happens whenever the assumption ε� 1 does not hold.

Computational example 1.2. Our second numerical example
shows how the solutions start to deviate when s0 and e0 are close to
each other (Figure 3). We can observe that with ε ∼ 1 the tran-
sient phase, related to the timescale tc, takes much longer and the
assumption that tc � ts is violated, thus invalidating the use of the
MM-model. The goodness of the approximation of the complex c can
be a better indicator of the applicability of the MM-model than the
approximation of the substrate s, as c undergoes a boundary layer
effect at the beginning of the reaction.

The values of the initial conditions used are as follows: s0 =
100, e0 = 50, c0 = 0, p0 = 0. As before, we use parameters (5) to
calculate Vmax = k2e0, Km = (k−1 + k2)/k1.

Computational example 1.3. In this numerical example ε > 1.
The HMM-solution for the substrate is even closer to the exponential
decay solution (Figure 4). As observed from the approximations of the
complex in the same figure, with ε > 1, the MM-model is inapplicable
due to the much longer timescale of the complex buildup.

The values of the initial conditions used for the given solution are
as follows: s0 = 100, e0 = 400, c0 = 0, p0 = 0. Here and everywhere in
the sequel Vmax = k2e0, Km = (k−1 + k2)/k1 using parameters (5).

The specific growth rate function µ(s) = Vmaxs/(Km + s) is visu-
alized for reference (Figure 5).

Case 2. K � 1.

Computational example 2.1. In this numerical example ε� 1
and the solutions of the three models (4), (2) and (11) are identical
(Figure 6).

The values of the initial conditions used for the given solution are
as follows: s0 = 0.1, e0 = 0.001, c0 = 0, p0 = 0.

Computational example 2.2. Although we have set the initial
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Figure 3: The solutions of the substrate (for models (2), (4), (11)) and the complex (for models
(2), (4)) in the case ε = 0.5 ∼ 1. Kinetic parameter values: k1 = 0.1, k−1 = 0.01, k2 = 10,Km =
(k−1 + k2)/k1 = 100.1, Vmax = k2e0 = 500; initial conditions: s0 = 100, e0 = 50, c0 = 0, p0 = 0.

conditions so that ε � 1, the substrate solutions of the three models
(4), (2) and (11) are still very close to each other (Figure 7).

The values of the initial conditions used in the models are as fol-
lows: s0 = 0.1, e0 = 2000, c0 = 0, p0 = 0.

The specific growth rate function µ(s) = Vmaxs/(Km + s) is visu-
alized for reference (Figure 8).

As described above, in case 2: K � 1 (also keeping in mind the
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Figure 4: The solutions of the substrate (for models (4), (2), (11)) and the complex (for models
(4), (2)) in the case ε = 4 > 1. Kinetic parameter values: k1 = 0.1, k−1 = 0.01, k2 = 10,Km =
(k−1 + k2)/k1 = 100.1, Vmax = k2e0 = 4000; initial conditions: s0 = 100, e0 = 400, c0 = 0, p0 =
0.

assumption k−1 � k2), the MM-model can serve as a very good ap-
proximation to the Henri-Michaelis-Menten law in terms of substrate
dynamics, regardless of the range of initial conditions. As seen from
the solutions of the complex though (Figure 7), the MM-model com-
pletely fails to provide a good approximation of the complex dynamics
when ε� 1. This is expected since the approximate model only pro-
vides the outer solutions of the system in the terms of singular pertur-
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Figure 5: The specific growth rate function µ(s) = Vmaxs/(Km + s) from model (4) calculated
in the range s from 0 to s0 = 100. Case - ε = 10−3 � 1. Kinetic parameter values: k1 =
0.1, k−1 = 0.01, k2 = 10,Km = (k−1 + k2)/k1 = 100.1, Vmax = k2e0 = 1; initial conditions:
s0 = 100, e0 = 0.1, c0 = 0, p0 = 0.

bation analysis and in this case the inner solution has to be accounted
for due to the longer timescale of the complex buildup process. Ac-
cording to the MM-model, the solution of the enzyme-substrate com-
plex can be derived as c(t) = e0s(t)/(Km + s(t)), which under the
proposed conditions (K � 1, k−1 � k2 and ε � 1) cannot serve as
a good approximation of the exact complex behavior. If we consider
the non-dimensionalized system (9) under the same conditions, we can
conclude that dv/dτ ∼ 0 hence v = const.

The specific growth rate function (Figure 8) is almost linear in
this case (again, regardless of whether ε� 1 or ε� 1) in contrast to
case 1. It is thus natural to expect the approximate model to predict
substrate solutions similar to exponential decay in this case.

Finally, the criterion (6) is obviously violated for computational
example 2.2. (in contrast to all other examples where it is evaluated
to less than 1):

k2e0

k1(s0 +Km)2
= 19.9.

Nevertheless, since K � 1, k−1 � k2, the proposed explanations
in Section 3.1.1 are indeed manifested and the substrate solutions of
all the three considered models are identical. As noted, this does not
necessarily mean that the solutions of the other molecular species are
correct, e.g. the MM-model solutions for the complex are incorrect in
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Figure 6: The solutions of the substrate (for models (4), (2), (11)) and the complex (for models
(4), (2)) in the case ε = 0.01� 1. Kinetic parameter values: k1 = 0.1, k−1 = 0.01, k2 = 10,Km =
(k−1 + k2)/k1 = 100.1, Vmax = k2e0 = 0.01; initial conditions: s0 = 0.1, e0 = 0.001, c0 = 0, p0 =
0.

case ε� 1.

3.2 Summary

There exist theoretical cases when the decay model produces bet-
ter approximation to the exact HMM-scheme than the MM-model.
Additionally, in certain cases in which the MM-model can provide
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Figure 7: The solutions of the substrate (for models (4), (2), (11)) and the complex (for models
(4), (2)) in the case ε = 2 ∗ 104 � 1. Kinetic parameter values: k1 = 0.1, k−1 = 0.01, k2 =
10,Km = (k−1 + k2)/k1 = 100.1, Vmax = k2e0 = 2 ∗ 104; initial conditions: s0 = 0.1, e0 = 2000,
c0 = 0, p0 = 0.

good substrate approximations, it may completely fail to give correct
estimates of the complex or enzyme behavior.

It has been demonstrated that the value of the Michaelis constant
may strongly depend on the method of calculation. On the other hand,
the rate constants in the enzyme kinetic Henri’s reaction scheme are
well-defined and can be efficiently computed from time course exper-
imental data. Moreover, the modeling of metabolic pathways makes
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s0 = 0.1, e0 = 2000, c0 = 0, p0 = 0.

use of multiple reactions and can be made more rigorous when based
on Henri’s reactions instead of Michaelis-Menten approximate reac-
tions, being especially imprecise when applied to living cells.

Such arguments confirm the need of refining the general methods
for the determination of the Henri’s reaction scheme rate constants.
In addition the need of validation methods in combination with the
availability of experimental data involving measurement errors [17]
should be pointed out; a more detailed introduction of the use of
validated interval methods is presented in [9].

Overall, the use of the Henri-Michaelis-Menten model allowed for
the analysis essential for the explanation of the valid and invalid uses
of the approximate Michaelis-Menten model. Furthermore, certain
biological interpretations were only possible to draw based on that
analysis.



4 Cell growth model with two cell frac-

tions

Following from the conclusions in Section 3, we will next examine
a reaction scheme modeling the process of cell growth. Previous works
have dealt with the development of cell growth models based on reac-
tion schemes [19], and in particular inspired by the Henri-Michaelis-
Menten law. However, the proposed reaction scheme has not been
comprehensively studied previously.

Let us examine the following reaction scheme:

S +X
k1−→←−
k−1

Y
k2−→ P + Y

α−→ 2X, (12)

P + Y
β−→ Q, (13)

where

S denotes the substrate

X denotes the inactive Lag-phase cells that do not divide

Y denotes the active Log-phase cells that do divide

P denotes the buildup of metabolic byproducts in the process of cell
growth and development that lead up to the catalysis of cell
division

Q denotes the byproducts not used for the process of cell division

k1 denotes the rate of growth of cells X as a result of the consumption
of substrate S

k−1 denotes the backward rate of inactivation of cells Y back into cells
X

k2 denotes rate of build up of metabolic byproducts essential for the
cell division



α denotes the rate of increase of the cell (X) population due to repro-
duction

β denotes the rate of utilization of byproducts P for any other means,
as well as their natural degradation

Using the law of mass action we derive the following model. We
intentionally leave the equation for q out of the system as our interest
is in the analysis of the dynamical behavior of s, x, y, p and they do
not directly depend on the byproducts q.

ds/dt = −k1sx+ k−1y,
dx/dt = −k1sx+ k−1y + 2αpy,
dy/dt = k1sx− k−1y − (α + β)py,
dp/dt = k2y − (α + β)py,

(14)

If [ ] denotes concentration then s = [S], x = [X], y = [Y ], p = [P ].
The system is closed with initial conditions:

s(0) = s0, x(0) = x0, y(0) = 0, p(0) = 0, (15)

where s0 > 0, x0 > 0. Additionally, due to biological considera-
tions we will assume:

k1 > 0, k−1 > 0, k2 > 0,
α > 0, β > 0, s0 > x0,

(16)

α + β > k2 ∼ k1 � k−1, (17)

α > β. (18)

Condition (17) follows from the common cell division timescales
for eukaryotic cells [7], which suggest that mitosis is the fastest phase,



while previous phases of cell growth and buildup of metabolic prod-

ucts are slower. In our model the reactions S + X
k1−→←−
k−1

Y are roughly

equivalent to phase G1 of the cell cycle, reaction Y
k2−→ P + Y is

roughly equivalent to phases S and G2 [7].
Condition (18) is set because we want to examine the system when

cell division is dominating, rather than depletion of the metabolic
byproducts that catalyze cell division and the resulting cell decay.
The analysis of the model under condition α ≤ β is left for future
work.

In order to study the system numerically and theoretically, we will
make use of approximations with a solid biological motivation. They
simplify the further analysis greatly and allow the use of techniques
of numerical and graphical analysis of two-dimensional systems.

In all following numerical experiments system (14) and its approxi-
mations are considered dimensionless for simplicity. Units of time and
concentration are thus intentionally omitted from all figures.

4.1 Case 1: Phase with no active cell division

4.1.1 Motivation

Starting from the initial stage when all cells are inactive, they need
to undergo a cascade of phases in the cell cycle in order to become vi-
able for cell division. As we assume that all cells are evenly distributed
in space, with equal chance of interacting with substrate we could ar-
gue that there exists an initial phase when no cell division takes place.
Instead, cells are in the process of growth which corresponds to the
first reaction in reaction scheme (12). In the initial phase there is very
limited cell division taking place, instead cells grow in size and build
up essential byproducts that catalyze the cell division.

In the first stage of analysis we will focus on the initial phase, when
cells do not divide, hence x+ y = const.



4.1.2 Deriving the model

Let us examine the condition x + y = c, c = const. Evaluating
it at t = 0, taking the initial conditions into consideration, we obtain
c = x0. Additionally, it holds that x′+y′ = 0. Summing up the second
and the third equations in system (14) results in:

−k1sx+ k−1y + 2αpy + k1sx− k−1y − (α + β)py = 0,

(α− β)py = 0.

For the purpose of this work, we will assume α > β, meaning cell
growth is the main reaction of interest and it dominates the dynamics
of the interactions between y and p. The alternative would instead
lead to cell death as if p had a toxic effect on the cells. This case will
be left for future analysis.

Case y = 0

From x + y = x0 it follows that x = x0 = const. Additionally,
p′ = 0 and p(0) = 0 thus p = 0. This leaves a single equation for s:
s′ = −k1x0s, which has an exponential decay as a solution. This case
has no relevant biological interpretation.

Case p = 0

System (14) can be rewritten substituting y with y = x0 − x and
having p = 0 as follows:

ds/dt = −k1sx+ k−1(x0 − x),
dx/dt = −k1sx+ k−1(x0 − x).

(19)

Clearly s′ = x′, thus using the initial conditions (x(0) = x0, s(0) =
s0) to find the integration constants, we can derive:



s = x+ s0 − x0,

s(0) = s0.

As the solution for s can be found if the solution for x is known,
we are left with a single differential equation:

dx

dt
= −k1x(x+ s0 − x0) + k−1(x0 − x), (20)

where

x(0) = x0.

4.1.3 Equilibria and stability

First, we need to find the equilibrium points by solving the follow-
ing algebraic equation:

−k1(x+ s0 − x0)x+ k−1(x0 − x) = 0,

−k1x
2 − (k−1 + k1s0 − k1x0)x+ k−1x0 = 0.

The solutions are:

x̂1 =
−k−1 − k1s0 + k1x0 −

√
4k−1k1x0 + (−k−1 − k1s0 + k1x0)2

2k1

,

x̂2 =
−k−1 − k1s0 + k1x0 +

√
4k−1k1x0 + (−k−1 − k1s0 + k1x0)2

2k1

.

The stability of the two points x̂1, x̂2 will be examined using lin-
earization technique.

Let dx/dt = f(x). We will find the closest linear approximation of
ODE (20) near the equilibrium points x̂1, x̂2. Close to an equilibrium
point x? (f(x?) = 0), f(x) could be approximated by:



f(x) ∼ f(x?) + f ′(x?)(x− x?) = f ′(x?)(x− x?)

If we denote y = x− x?, then from dy/dt = dx/dt it follows:

dy

dt
∼ f ′(x?)y,

the solution of which is y(t) ∼ ef
′(x?)ty(0). Obviously if f ′(x?) < 0,

then limt→∞ y(t) = 0 and limt→∞ x(t) = x?. If on the other hand,
f ′(x?) > 0, then limt→∞ y(t) =∞ and limt→inf x(t) =∞

Then the equilibrium point x? is stable if f ′(x?) < 0, and it is
unstable if f ′(x?) > 0.

f ′(x) = −2k1x− k−1 − k1s0 + k1x0,

For the two equilibrium points we can obtain:

f ′(x̂1) =
√

4k−1k1x0 + (k1x0 − k−1 − k1s0)2,

f ′(x̂2) = −
√

4k−1k1x0 + (k1x0 − k−1 − k1s0)2.

From k−1 > 0, k1 > 0, x0 > 0 it follows that 4k−1k1x0 + (k1x0 −
k−1 − k1s0)2 > 0 thus x̂1 is unstable and x̂2 is stable.

4.1.4 Numerical experiments (no active cell division)

A rate balance plot indicates that the negative terms of equation
(20) are larger in absolute value than the positive terms for x ∈ [0, x0]
and the used parameter values (Figure 9a). Thus, the solution for x in
the considered cell growth phase is decreasing from the initial value of
x0. This is further supported by the plot of x against dx/dt, denoted
ẋ (Figure 9b).
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Figure 9: Analysis of equation (20). The parameter values and initial conditions for both plots
are: x0 = 10, s0 = 100, k−1 = 0.01, k1 = 0.1.

Finally, the numerical solutions of equation (20) have been plotted
(Figure 10). A relatively small change in the concentration of the
substrate s can be observed. The activation of cells is illustrated by
the decrease of inactive cells x and the corresponding increase in active
cells y.
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Figure 10: The numerical solutions of equation (20). Parameters values: k−1 = 0.01, k1 = 0.1;
initial conditions: x0 = 10, s0 = 100.



4.2 Case 2: Active cell division phase

4.2.1 Motivation

Starting from the initial system (14) and taking another condition
into consideration would in turn allow us to derive a more manageable
system of ODEs for the phase of active cell division.

Let us first examine the points where p′ = 0. From system (14) it
follows that if p′ = 0:

k2y − (α + β)py = 0,

(k2 − (α + β)p)y = 0.

Then either y = 0 or p = k2/(α+β). We will exclude the equation
for p from the system, assuming that it has reached its steady state of
p = k2/(α + β). This is a reasonable assumption given that reactions

P + Y
α−→ 2X and P + Y

β−→ Q are much faster than Y
k2−→ P + Y ,

as the final phase in cell division usually has a much shorter time-scale
than the phases of cell growth and buildup of metabolic products [7].

If the solution for p is monotonically increasing, that would mean
the maximum value it would reach is much smaller under the afore-
mentioned conditions (namely if the reaction of buildup of p is much
slower than the reaction of uptake of p).

We argue that the solution for p is a monotonically increasing
function. Indeed, in the beginning of the reaction when both y and
p are very small (note the initial conditions are p(0) = 0, y(0) = 0),
p � 1, y � 1. It is reasonable to assume (α + β)py � k2y. Thus, p
increases initially until either y = 0 or p = k2/(α+ β). It will be later
proved that y = 0 corresponds to a steady state of the approximate
model. Additionally, numerical experiments show that solutions for y
initially increase significantly, allowing p to reach its maximum value.



4.2.2 Deriving the model

Under the assumption that p has reached the value of k2/(α+ β),
ODE system (14) can be rewritten as system (21):

ds/dt = −k1sx+ k−1y,
dx/dt = −k1sx+ k−1y + γk2y,
dy/dt = k1sx− k−1y − k2y,

(21)

where

s(0) = s1 > 0, x(0) = x1 > 0, y(0) = y1 > 0,

and

γ =
2α

α + β
.

We are only interested in the case α > β, thus in the analysis in
all following sections we will assume 1 < γ ≤ 2.

Let us now examine the sum of x′ + y′ and the difference x′ − s′:

x′ + y′ = (γ − 1)k2y,

x′ − s′ = γk2y.

Now, k2y can be expressed in terms of x′, s′ and γ and substituted
in the equation for x′ + y′ as follows:



x′ − s′

γ
= k2y,

x′ + y′ = (γ − 1)
x′ − s′

γ
,

x′ = −γy′ − s′(γ − 1).

Integrating the above and using the initial conditions for the active
cell growth phase we can derive:

x+ c1 = −γy − γc2 − (γ − 1)s− (γ − 1)c3,

−c1 − γc2 − (γ − 1)c3 = x1 + γy1 + (γ − 1)s1,

x = x1 + γy1 + (γ − 1)s1 − γy − (γ − 1)s,

where x1, y1, s1 are the values of x, y, s at the start of the phase,
the initial conditions for system (21).

Finally for x(t) we have:

x(t) = x1 + γy1 + (γ − 1)s1 − γy(t)− (γ − 1)s(t), t > 0,
x(0) = x1.

(22)

A substitution of the derived equation for x in system (21) results
in the following system of two ODEs:

ds/dt = −k1(x1 + γy1 + (γ−1)s1 − γy − (γ−1)s)s+ k−1y,

dy/dt = k1(x1 + γy1 + (γ−1)s1 − γy − (γ−1)s)s+ k−1y − k2y,
(23)

with initial conditions

s(0) = s1, y(0) = y1.



4.2.3 Equilibria and stability

The following algebraic system needs to be solved in order to find
the equilibrium points of the system of ODEs (23):

−k1(x1 + γy1 + (γ − 1)s1 − γy − (γ − 1)s)s+ k−1y = 0,

k1(x1 + γy1 + (γ − 1)s1 − γy − (γ − 1)s)s− k−1y − k2y = 0.

Summing up both equations we obtain:

−k2y = 0.

From conditions (16) it follows that k2 > 0 and thus y = 0. Substi-
tuting y = 0 into the first equation of the algebraic system we derive:

−k1(x1 + γy1 + (γ − 1)s1 − (γ − 1)s)s = 0.

The two solutions of that equation are {s1 = 0, s2 = (s1(γ − 1) +
γy1 + x1)/(γ − 1)}.

Finally, as y = 0 the two equilibrium points are:

E1 = (0, 0),

E2 =
(s1(γ − 1) + γy1 + x1

γ − 1
, 0
)
.

An observation about E2 is that the value for the substrate s is
bigger than the initial condition s1 (note that γ > 1):

s1(γ − 1) + γy1 + x1

γ − 1
= s1 +

γy1 + x1

γ − 1
> s1.

To study the local stability of the two equilibrium points we need
to derive the Jacobi matrix of system (23):



J =


∂f1

∂s

∂f1

∂y
∂f2

∂s

∂f2

∂y

 ,

where f1 denotes the right-hand side of ds/dt in system (23), while
f2 denotes the right-hand side of dy/dt in system (23).

Finally, it is easy to obtain:

J =

(
−k1(x1 + γy1 + (γ − 1)s1 − γy − 2(γ − 1)s) k−1 + k1γs
k1(x1 + γy1 + (γ − 1)s1 − γy − 2(γ − 1)s) −k−1 − k2 − k1γs

)

Local stability of Equilibrium point E1 - (s = 0, y = 0).

The Jacobi matrix J evaluated at E1 is:

J(E1) =

(
−k1(x1 + γy1 + (γ − 1)s1) k−1

k1(x1 + γy1 + (γ − 1)s1) −k−1 − k2

)
.

The eigenvalues of J(E1) need to be found in order to study the
local stability of equilibrium point E1. If non-zero, their signs would
determine whether the point is stable or unstable. Recall that the
eigenvalues of a matrix A can be found by solving det(A − λE) = 0,
where E is the identity matrix of the appropriate size. In our case that
would be the identity matrix of size 2 because J(E1) is a 2x2 matrix.

Solving the resultant equation of det(J(E1)− λE) = 0, the eigen-
values of J(E1) are found to be:

λ1 = −1

2
(k−1 + k2 + k1(s1(γ − 1) + x1 + γy1)+

+
√

(k−1 +k2 +k1(x1 +s1(γ−1)+γy1))2−4k1k2(x1 +s1(γ − 1)+γy1),

and



λ2 = −1

2
(k−1 + k2 + k1(s1(γ − 1) + x1 + γy1)−

−
√

(k−1 +k2 +k1(x1 +s1(γ−1)+γy1))2−4k1k2(x1 +s1(γ−1)+γy1).

Let us denote σ = k1(x1 + s1(γ−1) +γy1) to simplify the analysis.
It is first important to show that the eigenvalues are real (λ1, λ2 ∈ R).
The following holds under rate conditions (16):

−4k2σ + (k−1 + k2 + σ)2 > 0.

The validity of the inequality is obvious if the above is rewritten
as:

−4k2σ + (k−1 + k2 + σ)2 = k2
−1 + (k2 − σ)2 + 2k−1(k2 + σ) > 0,

If we then compare the considered square root term with k−1 +
k2 + σ, taking their second power, we can obtain:

(k−1 + k2 + σ)2 > −4k2σ + (k−1 + k2 + σ)2.

It then follows directly that under conditions (16), and more specif-
ically if σ > 0, k1 > 0, k−1 > 0, k2 > 0, both eigenvalues λ1, λ2 are
strictly negative and thus, the point E1 is a stable node.

Local stability of Equilibrium point E2 - (s = (s1(γ − 1) + γy1 +
x1)/(γ − 1), y = 0)

The Jacobi matrix J evaluated at E2 is:

J(E2) =

(
k1(x1 + γy1 + (γ − 1)s1) k−1 + k1γ

s1(γ−1)+γy1+x1
γ−1

−k1(x1 + γy1 + (γ − 1)s1) −k−1 − k2 − k1γ
s1(γ−1)+γy1+x1

γ−1

)
.



Denote σ = k1(x1 + s1(γ − 1) + γy1) > 0. Matrix J(E2) can then
be rewritten as:

J(E2) =

(
σ k−1 + γ σ

γ−1

−σ −k−1 − k2 − γ σ
γ−1

)
.

The eigenvalues of J(E2) are:

λ1 = −

(
(k−1 + k2)(γ − 1) + σ) +

√
4k2(γ − 1)2σ + ((k−1 + k2)(γ − 1) + σ)2

)
2(γ − 1)

,

and

λ2 = −

(
(k−1 + k2)(γ − 1) + σ)−

√
4k2(γ − 1)2σ + ((k−1 + k2)(γ − 1) + σ)2

)
2(γ − 1)

.

All parameters and initial conditions are strictly positive (k−1 > 0, k1 >
0, k2 > 0, x1 > 0, s1 > 0), following from conditions (16), also γ > 1
(condition (18)). Thus, the radicand in λ1, λ2 is positive and it is obvious
that all terms in the equation for λ1 are negative, thus λ1 < 0.

The sign of λ2 depends on the sign of the nominator since γ > 1 (con-
dition (18)). Let us compare the squares of the positive term and the two
negative terms of the nominator.

(
(k−1 + k2)(γ − 1) + σ

)2
< 4k2(γ − 1)2σ +

(
(k−1 + k2)(γ − 1) + σ

)2
The positive term in the equation for λ2 is bigger than the negative

term, hence λ2 > 0 and finally E2 is an unstable point (a saddle, due to
the different signs of the eigenvalues).

An expected result would be to see the trajectories of the dynamical
system approaching asymptotically the eigenvector associated with the pos-
itive eigenvalue. Numerical experiments confirm that behavior (Figure 12d)
(note that E2 is visualized by the gray point on the axis y = 0), the tra-
jectories close to E2 are attracted by the point on the y axis and they are
repelled by it on the s axis.



Finding an estimate of the concentration of inactive cells (x) when
the system has reached equilibrium point E1

The solution for x(t) obtained in Section 4.2.2, equation (22), and eval-
uated at t = t?, where t? corresponds to E1 is:

x(t?) = x1 + γy1 + (γ − 1)s1. (24)

From Section 4.1 we know that s = s0−x0+x for the case x+y = const.
Under the assumption that the active cell division phase starts shortly after
the phase where x+y = const, and the change in concentrations of substrate
and cell populations is very small in-between the two phases, we can derive
s1, the initial substrate concentration at the beginning of the active division
phase with:

s1 = s0 − x0 + x1.

Further, since x+ y = const = x0 for the duration of the phase with no
active cell division:

s1 = s0 − x0 + x1 = s0 − x0 + x0 − y1 = s0 − y1.

Substituting the above in equation (24) we obtain:

x(t?) = x1 + γy1 + (γ − 1)(s0 − y1),

x(t?) = x1 + y1 + (γ − 1)s0.

Again assuming the insignificant change in concentration of x, y, s be-
tween the two phases we finally have:

x(t?) = x0 + (γ − 1)s0, (25)

γ =
2α

α+ β
. (26)

The concentration of all living cells at E1 is equal to the concentration
of inactive x cells since y = 0. Given that also 1 < γ ≤ 2 we obtain
x0 < x(t?) ≤ x0 + s0.



4.2.4 Numerical experiments (active cell division)

Having an insight about the dynamical system’s behavior, as well as
certain characteristics of the equilibrium points, is essential. The nullclines
of system (23) are thus plotted on (Figure 11). There is only one point
where the two lines intersect, that is at y = s = 0. As proved in Section
4.2.3 this is a stable node.
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Figure 11: The nullclines of the system (23). Parameter values: k−1 = 0.01, k1 = 0.1, k2 =
1, γ = 1.9; initial conditions: y1 = 10, s1 = 100.

It is clearly visible from the phase portrait of the system (Figure 12) that
the expected behavior is for solution of the substrate to be monotonically
decreasing, while solutions of the active cells are initially increasing to their
maximum value and then decreasing to 0. If the condition x0 � s0 holds,
it can be argued that y1 � s1. Then solutions cross the y-nullcline exactly
once and never cross the s-nullcline. If, however, y1 ∼ s1 solutions cross
the y-nullcine two times thus the solution for y is first decreasing, then
increasing and finally decreasing again until it reaches the value of 0 (Figure
12d).

For biologically reasonable relations (conditions (17), (18)) between the
parameters of system (23), numerical experiments show that the solution
for p reaches its maximum of k2/(α+ β) (Figure 13).

Finally, system (21) has been solved numerically (Figure 14). Numerical
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Figure 12: Phase portraits of system (23) showing the dynamics of a solution (red line) with
initial conditions: y1 = 10, s1 = 100 and parameter values: k−1 = 0.01, k1 = 0.1, k2 = 1, γ = 1.9.
In all plots the green line is the s-nullcline, the blue line is the y-nullcline. (a) The phase portrait
along with a solution of the system. (b) The behavior for s ∈[0, 10] illustrating dynamics close to
the steady state. (c) The phase portrait of the system when s1 = 1 and all other initial conditions
and parameters being unchanged. (d) The phase portrait of the system when y1 = 50, s1 = 100,
showing that the solution crosses the y-nullcline twice.

experiments confirm that under the considered conditions (17), (18) cells
grow up to concentrations in the range (x0, x0 + s0], which depends on the
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Figure 13: A parametric plot of the numerical solutions of system (14) as a function of x,
y, p. Parameter values: k−1 = 0.01, k1 = 0.1, k2 = 1, α = 10, β = 0.5; initial conditions:
y1 = 10, s1 = 100. The color of the solution signifies change in value of p.

rate constants α and β as outlined in equation (25).

4.3 Numerical experiments

The initial system (14) was solved numerically for a set of initial condi-
tions and parameter values: k−1 = 0.01, k1 = 0.1, k2 = 1, α = 10, β = 0.5,
x0 = 10, s0 = 100, y0 = 0, p0 = 0. As above, all parameters and initial
conditions are considered dimensionless.

The experiments confirm the validity of the approximations made in
Section 4.1 and Section 4.2. Indeed, initially there is very little or no cell
growth observable (Figure 16). The values of the parameters and initial
conditions are kept in line with conditions (17), (18).

Furthermore, under the aforementioned conditions the solution for p
reaches its maximum before the active cell division phase takes place (Fig-
ure 16).

Although the case of rate constants α and β being equal is not discussed
in this work, a numerical experiment is presented to illustrate the behavior
of the solutions (Figure 17). As we can see, there is no cell growth during
the whole process, while the substrate is completely utilized.
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Figure 14: Numerical solutions of system (23). Parameter values: k−1 = 0.01, k1 = 0.1, k2 =
1, α = 10, β = 0.5, γ ∼ 1.9; initial conditions: y1 = 10, s1 = 100.
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Figure 15: The numerical solutions of system (14). Parameter values: k−1 = 0.01, k1 =
0.1, k2 = 1, α = 10, β = 0.5; initial conditions: x0 = 10, s0 = 100.
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(a) There is very little cell growth in this phase, rather there is product
buildup to the point of its maximum value.
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(b) A logarithmic scale plot showing the dynamics of the product along with
the active and inactive cells.

Figure 16: The solutions of system (14) in the timescale when there is no cell growth. Parameter
values: k−1 = 0.01, k1 = 0.1, k2 = 1, α = 10, β = 0.5; initial conditions: x0 = 10, s0 = 100.
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Figure 17: The numerical solutions of system (14) when γ ∼ 1 or γ = 1. Parameter values:
k−1 = 0.01, k1 = 0.1, k2 = 1, α = 10, β = 10; initial conditions: x0 = 10, s0 = 100. There is no
cell growth in this case, only activation and deactivation of the cells, while the substrate is being
completely depleted in the process.

4.4 Summary

The derived dynamical system (14) along with the reaction scheme (12)
it is based on, show promising results in modeling the process of cell growth.
The behavior of the solution for s is of particular interest because it is diffi-
cult for phenomenological models of Monod type to replicate experimental
results closely. Numerical experiments for system (14) show that there is a
sharp decrease in substrate concentration during the initial phase, followed
by a slower decay during the phase of active cell division (Figure 15).

The analysis of the approximate model for the active cell division phase
(23) proves the existence of an unstable equilibrium and a stable equilib-
rium:

E1 = (0, 0),

E2 =
(s1(γ − 1) + γy1 + x1

γ − 1
, 0
)
,

where E1 is a stable node and E2 is unstable - a saddle point.



An interval has been found, under certain conditions, for the resulting
concentration of inactive cells after the growth process has finished. This is
valid under the conditions that p = k2/(α+β) at the beginning of the active
cell division phase, as well as that there has been an insignificant change
in concentration of s, x, y in-between the two considered phases (4.1) and
(4.2). It then follows that x0 < x(t?) ≤ x0 + s0, where t? corresponds to
the stable fixed point of the phase of active cell division.

5 Discussion

A central focus of this work is to prove the case for the use of mechanis-
tic models induced by reaction schemes in the context of enzyme kinetics
and cell growth. While the proposed model analyzed in Section 4 shows
promising results for further analysis and validation against experimental
data, it is important to discuss certain limitations that have been recog-
nized.

A complete biological interpretation is yet to be given for the byprod-
ucts P of reaction scheme (12). The question about its intercellular and/or
intracellular role in the process of cell division is central in the development
of the model. Previous works have identified the necessity to introduce a
micro scale and a macro scale for reactions modeling metabolic processes
of living cells where intracellular interactions are considered as well as in-
tercellular reactions [31].

The motivation for the approximate model (Section 4.2) is based on
numerical experiments, as well as the physical nature of the process at
hand. More solid theoretical evidence is required in order to unambiguously
define the validity of that case. The employed methods of finding equilibria
and assessing their stability are insufficient to study the original system of
ODEs (14), hence more advance techniques are necessary.

In order to evaluate the significance and applicability of approximate
model (23), it has to be compared to models focusing on the same cell
growth phase. The Monod-type models are a good starting point for such
an evaluation. It is of great interest to determine whether the simplified
model that follows from a reaction scheme inspired by the Henri-Michaelis-
Menten reaction scheme, would be able to perform as well as, or better
than, a Monod-type model in the context of cell growth. Ease of use in



numerical experiments, goodness of fit against experimental data, ability
to provide further insights about the biological process are only a few of
the criteria for analysis. Results from such studies will determine future
directions of development for the model.

It is true that certain models following from reaction schemes that de-
scribe cell growth processes can be cumbersome to analyze. They are usu-
ally non-linear, involve many variables, and are difficult to handle using
simple but popular dynamical systems analysis techniques. With the anal-
ysis of the proposed model in Section 4 it has been proved that it is possible
to analyze such models even with simple methods. Essential for the process
is the understanding of the underlying physical phenomenon and the ability
to recognize valid simplifications that greatly help reduce the complexity
of the required work.

The software tools CAS �Mathematica and MATLAB have been used
in this work as computational tools, however, other suitable software tools
can be used as well, such as COPASI [15], [20].

6 Conclusions

Classical enzyme kinetics models, such as the Henri-Michaelis-Menten
model, the Michaelis-Menten model and the exponential decay model have
been examined and compared in a numerical experiment. There exist cases
when results of data fitting from approximate models can be very misleading
about the dynamical behavior they suggest. Validation techniques and
validity conditions are briefly reviewed.

A novel cell growth model has been proposed and studied analytically,
making use of approximations with a solid biological motivation. They have
further simplified the analysis and allowed the use of techniques, numerical
and graphical analysis of two-dimensional systems.

Numerical experiments demonstrate the validity of the proposed ap-
proximations in biologically meaningful cases. They further help visualize
the dynamical behavior of the system, shedding light on the plausibility of
the studied model in the context of cell growth.

When modeling kinetic reactions or metabolic processes in living cells
the suggested approach is to start with a description of the process by



biochemical reaction equations (schemes) and then pass to mathematical
differential equations via the mass action principle. Such an approach is
useful in keeping close to the biochemical mechanism of the modeling pro-
cess; the use of this approach is recommended not only in fields like enzyme
kinetic and metabolic networks but also in fields like cell growth and pop-
ulation dynamics [19].
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Michaelis-Menten, FEBS J. 281 (2014) 518–530.

[12] S. M. Hanson, S. Schnell, The reactant stationary approximation in
enzyme kinetics, J. Phys. Chem. A 112 (2008) 8654-8658.

[13] V. Henri, Recherches sur la loi de l’action de la sucrase, C. R. Hebd.
Acad. Sci. 133 (1901) 891–899.
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