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Abstract In this note we find application of a new class cumula-
tive distribution function transformations to construct a family of sig-
moidal functions based on the Verhulst logistic function.

We prove estimates for the Hausdorff approximation of the shifted
Heaviside step function by means of this family. Numerical examples,
illustrating our results are given.
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1 Introduction

In literature, several transformations exists to obtain a new cumu-
lative distribution function (cdf) using other(s) well-known cdf(s) [1]–
[7].

Many researches have used the quadratic rank transmuted map
(QRTM) to develop new life time distribution.

Kumar et al. [8] proposed the cdf distribution by the use of any
two cdf F1(t) and F2(t) of baseline continuous distribution(s) with
common spectrum, by the transformation:

Definition 1. [8]

G(t) =
F1(t) + F2(t)

1 + F1(t)
. (1)

If F1(t) = F2(t) = F (t), then (1) reduces to the following form

G(t) =
2F (t)

1 + F (t)
. (2)

The transformation (1) has great applications in life time analysis.

Definition 2. Define the logistic (Verhulst) function f on R as

f(t) =
1

1 + e−kt
. (3)

The logistic function belongs to the important class of smooth
sigmoidal functions arising from population and cell growth models.

Since then the logistic function finds applications in many scientific
fields, including biology, population dynamics, chemistry, demography,
economics, geoscience, mathematical psychology, probability, financial
mathematics, statistics, insurance mathematics, nucleation theory to
name a few [9]–[18].



Definition 3. The (interval) step function is:

ht0(t) =


0, if t < t0,

[0, 1], if t = t0,

1, if t > t0,

usually known as shifted Heaviside step function.

Definition 4. [19], [20] The Hausdorff distance (the H–distance) ρ(f, g)
between two interval functions f, g on Ω ⊆ R, is the distance between
their completed graphs F (f) and F (g) considered as closed subsets of
Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (4)

wherein ||.|| is any norm in R2, e. g. the maximum norm ||(t, x)|| =
max{|t|, |x|}; hence the distance between the points A = (tA, xA), B =
(tB, xB) in R2 is ||A−B|| = max(|tA − tB|, |xA − xB|).

In this paper we discuss several computational, modelling and ap-
proximation issues related to the class of cdf transformation (2) to
construct a family of sigmoidal functions based on the Verhulst logis-
tic function.

2 Main Results

Let us consider the following sigmoid

G(t) =
2 1
1+e−kt

1 + 1
1+e−kt

(5)

with

G(t0) =
1

2
, t0 = −1

k
ln 2 (6)



based on (2) with the Verhulst logistic function f(t).

The H-distance d = ρ(ht0 , G) between the shifted Heaviside step
function ht0 and the sigmoidal function G satisfies the relation:

G(t0 + d) =
2 1
1+e−k(t0+d)

1 + 1
1+e−k(t0+d)

= 1− d. (7)

The following theorem gives upper and lower bounds for d = d(k)

Theorem 2.1 The H-distance d(k) between the function ht0 and
the function G can be expressed in terms of the rate parameter k for
any real k ≥ 2 as follows:

dl =
1

2.5(1 + 0.25k)
< d <

ln 2.5(1 + 0.25k)

2.5(1 + 0.25k)
= dr. (8)

Proof. We define the functions

F1(d) =
2 1
1+e−k(t0+d)

1 + 1
1+e−k(t0+d)

− 1 + d (9)

G1(d) = −1

2
+ (1 + 0.25k)d. (10)

From Taylor expansion

2 1
1+e−k(t0+d)

1 + 1
1+e−k(t0+d)

− 1 + d− (−1

2
+ (1 + 0.25k)d) = O(d2)

we see that the function G1(d) approximates F1(d) with d → 0 as
O(d2) (cf. Fig.1).

In addition G′1(d) > 0 and for k ≥ 2

G1(dl) < 0; G1(dr) > 0.

This completes the proof of the inequalities (8).



Figure 1: The functions F1(d) and G1(d) for k = 20.

Figure 2: The H-distance d(k) between the functions ht0 and G for k =
20 is d = 0.106402; dl = 0.066667; dr = 0.180537; t0 = −0.0346574.



Figure 3: The H-distance d(k) between the functions ht0 and G for k =
25 is d = 0.0917149; dl = 0.0551724; dr = 0.159851; t0 = −0.0277259.

Figure 4: The H-distance d(k) between the functions ht0 and G for k =
40 is d = 0.0661748; dl = 0.0363636; dr = 0.120516; t0 = −0.0173287.



Figure 5: The H-distance d(k) between the functions ht0 and G for
k = 60 is d = 0.0493157; dl = 0.025; dr = 0.092222; t0 = −0.0115525.

The generated sigmoidal functions G(t) for k = 20, 25, 40, 60 are
visualized on Fig. 2–Fig.5

Some computational examples using relations (8) are presented in
Table 1. The third column of Table 1 contains the value of d for
prescribed values of k computed by solving the nonlinear equation
(7).

3 Conclusions

To achieve our goal, we obtain new estimates for the H-distance be-
tween a shifted Heaviside step function and its best approximating
family of transmuted cumulative distribution function G(t) based on
the Verhulst logistic function.

The result has application in population dynamics.



k dl d computed by (7) dr
10 0.114286 0.163351 0.247892
20 0.066667 0.106402 0.180537
30 0.0470588 0.0809732 0.143829
40 0.0363636 0.0661748 0.120516
60 0.025 0.0493157 0.092222
100 0.0153846 0.0335928 0.0642213
500 0.0031746 0.00933024 0.0182621
1000 0.00159363 0.00524519 0.0102657

Table 1: Bounds for d(k) computed by (7) and (8) for various rates k

Numerical examples, illustrating our results are given.

For other results, see [21]–[29].

We propose a software module within the programming environ-
ment CAS Mathematica for the analysis of the considered families of
transmuted cumulative distribution functions.

The module offers the following possibilities:

- generation of the function G(t) under user defined values of the
reaction rate k and t0;

- calculation of the H-distance between the Heaviside function ht0
and the sigmoidal function G(t);

- software tools for animation and visualization.

Remarks. In [30] we consider popular transformations [5], [7]:

G1(t) =
1

e− 1

(
eF (t) − 1

)
(11)

G2(t) = e1−
1

F (t) . (12)

for generating of some sigmoidal functions based on the Verhulst lo-
gistic function.



Figure 6: Software tools in CAS Mathematica.



In [31] the authors proposed the following new cumulative distri-
bution function based on m existing ones:

G(t) =

m∑
k=1

Fk(t)

m− 1 +
m∏
k=1

(Fk(t))
δk

. (13)

Based on the methodology proposed in the present note, the reader
may formulate the corresponding modeling and approximation prob-
lems on his/her own.

Following the ideas given in [32] we propose the following new
sigmoidal family with parameter λ:

G3(t) = (1 + λ)G(t)− λG2(t) |λ| ∈ [0, 1]

G(t) = 2F (t)
1+F (t)

F (t) = 1
1+e−kt

G3(t∗0) = 1
2
; t∗0 = 1

k
ln 1

2(λ+
√

1+λ2)

(14)

In some cases the approximation of the shifted Heaviside function
by G3(t) is better in comparison to its approximation by G(t)

The generated sigmoidal function G3(t) for k = 20 and λ = 0.5 is
visualized on Fig. 7

Acknowledgments. This work has been supported by the project
FP17-FMI-008 of Department for Scientific Research, Paisii Hilen-
darski University of Plovdiv.



Figure 7: The H-distance between the functions ht∗0 and G3(t) for
k = 20 is d = 0.102006; t∗0 = −0.058718.
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